

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

January 2018

Problem:

The sequence of positive integers $x_0, x_1, \ldots, x_{2018}$ is said to be a *new year* sequence if it satisfies the following three conditions:

$$\dagger 1 = x_0 \le x_1 \le x_2 \le \dots \le x_{2018}$$

†† the range of the sequence consists of exactly 100 different positive integers

$$\dagger \dagger \dagger \quad \sum_{i=2}^{2018} x_i (x_i - x_{i-2}) = 9998.$$

Find the number of distinct new year sequences.

Solution: Answer:
$$\binom{1918}{98} + \binom{98}{2} \binom{1918}{95}$$

Let us show that the number of sequences $1 = x_0 \le x_1 \le x_2 \le \cdots \le x_n$ consisting of k different positive integers and satisfying $\sum_{i=2}^{n} x_i(x_i - x_{i-2}) = k^2 - 2$ is equal to $\binom{n-k}{k-2} + \binom{k}{2}\binom{n-k}{k-5}$ for all $k \ge 5, n \ge 2k-2$. Note that due to monotonicity of the sequence for each $i \ge 2$

$$(x_i - x_{i-2} - 1)(x_i - x_{i-1}) \ge 0 \tag{1}$$

Equivalently,

$$x_i^2 - x_i x_{i-2} + x_{i-1} x_{i-2} - x_i x_{i-1} \ge x_i - x_{i-1}$$

Side by side summation of (1) for i = 2, 3, ..., n yields

$$\sum_{i=2}^{n} x_i (x_i - x_{i-2}) \ge x_n (x_{n-1} + 1) - 2x_1 \tag{2}$$

Case 1: $x_1 = 1$. Since the sequence consists of k distinct integers we get

$$x_n \ge k \text{ and } x_{n-1} \ge k-1 \tag{3}$$

Now by (2) we get

$$\sum_{i=2}^{n} x_i(x_i - x_{i-2}) \ge k^2 - 2$$

Therefore, the inequalities (1) and (3) should turn to equalities: $x_n = k, x_{n-1} = k-1$ and for i = 2, 3, ..., n either $x_i - x_{i-2} = 1$ or $x_i = x_{i-1}$. Thus, $x_i - x_{i-1} \leq 1$. If for some *i* we have $x_i - x_{i-1} = x_{i-1} - x_{i-2} = 1$ then $x_i - x_{i-2} = 2$, a contradiction. It means that in the sequence the length of each block of coinciding elements is at least 2. In order to construct a sequence we should determine smallest indices for which the sequence element is equal to $2, 3, \ldots, k-1$. Evidently the number of choices is equal to the number of integer solutions of the equation $t_1 + t_2 + \cdots + t_{k-1} = n$, where each term is a positive integer exceeding 1. Thus the answer is $\binom{n-2(k-1)+k-1-1}{k-2} = \binom{n-k}{k-2}$.

Case 2: $x_1 \ge 2$. Since the sequence consists of k distinct integers we get

$$x_n \ge x_1 + k - 2 \text{ and } x_{n-1} \ge x_1 + k - 3$$
 (4)

Now by (2) we get

$$\sum_{i=2}^{n} x_i (x_i - x_{i-2}) \ge (x_1 + k - 2)^2 - 2x_1$$

Therefore,

$$0 = \sum_{i=2}^{n} x_i (x_i - x_{i-2}) - (k^2 - 2) \ge (x_1 - 2)(x_1 + 2m - 4) - 2$$

If $x_1 > 2$ then the right hand side is positive, a contradiction. Therefore, $x_1 = 2$. Since $x_1 = 2$ we get $x_n \ge k, x_{n-1} \ge k-1$. If the least inequalities are not equalities then by (2) $\sum_{i=2}^{n} x_i(x_i - x_{i-2}) > k^2 - 2$. Therefore, $x_n = k$ and $x_{n-1} = k - 1$. Thus, the new year sequence takes all values from 1 to k and $x_i - x_{i-1} \le 1$. Therefore, the only possible non-zero value of the expression $(x_i - x_{i-2} - 1)(x_i - x_{i-1})$ in (1) is 1. Thus, the only possibility for $\sum_{i=2}^{n} x_i(x_i - x_{i-2}) = (k^2 - 2)$ is that for some two indices $(x_i - x_{i-2} - 1)(x_i - x_{i-1}) = 1$: $x_i - x_{i-1} = x_{i-1} - x_{i-2} = 1$ for two values of i. It means that in the sequence the length of each block of coinciding elements is at least 2 but there are two blocks with length 1. In order to construct a sequence we should determine the values of elements in blocks of length 1 and the smallest indices for which the sequence element is equal to $3, \ldots, k - 1$. Evidently the number of choices is equal to the number of solutions of the equation $t_1 + t_2 + \cdots + t_{k-4} = n - 3$, where each term is a positive integer exceeding 1. Thus the answer is $\binom{k-2}{2} \binom{n-3-2(k-4)+k-4-1}{k-2} = \binom{k-2}{2} \binom{n-k}{k-5}$. Done.