Bilkent University Department of Mathematics

Problem Of The Month

January 2018

Problem:

The sequence of positive integers $x_{0}, x_{1}, \ldots, x_{2018}$ is said to be a new year sequence if it satisfies the following three conditions:
$\dagger \quad 1=x_{0} \leq x_{1} \leq x_{2} \leq \cdots \leq x_{2018}$
$\dagger \dagger$ the range of the sequence consists of exactly 100 different positive integers
$\dagger \dagger \dagger \quad \sum_{i=2}^{2018} x_{i}\left(x_{i}-x_{i-2}\right)=9998$.
Find the number of distinct new year sequences.
Solution: Answer: $\binom{1918}{98}+\binom{98}{2}\binom{1918}{95}$.
Let us show that the number of sequences $1=x_{0} \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ consisting of k different positive integers and satisfying $\sum_{i=2}^{n} x_{i}\left(x_{i}-x_{i-2}\right)=k^{2}-2$ is equal to $\binom{n-k}{k-2}+$ $\binom{k}{2}\binom{n-k}{k-5}$ for all $k \geq 5, n \geq 2 k-2$. Note that due to monotonicity of the sequence for each $i \geq 2$

$$
\begin{equation*}
\left(x_{i}-x_{i-2}-1\right)\left(x_{i}-x_{i-1}\right) \geq 0 \tag{1}
\end{equation*}
$$

Equivalently,

$$
x_{i}^{2}-x_{i} x_{i-2}+x_{i-1} x_{i-2}-x_{i} x_{i-1} \geq x_{i}-x_{i-1}
$$

Side by side summation of (1) for $i=2,3, \ldots, n$ yields

$$
\begin{equation*}
\sum_{i=2}^{n} x_{i}\left(x_{i}-x_{i-2}\right) \geq x_{n}\left(x_{n-1}+1\right)-2 x_{1} \tag{2}
\end{equation*}
$$

Case 1: $x_{1}=1$. Since the sequence consists of k distinct integers we get

$$
\begin{equation*}
x_{n} \geq k \text { and } x_{n-1} \geq k-1 \tag{3}
\end{equation*}
$$

Now by (2) we get

$$
\sum_{i=2}^{n} x_{i}\left(x_{i}-x_{i-2}\right) \geq k^{2}-2
$$

Therefore, the inequalities (1) and (3) should turn to equalities: $x_{n}=k, x_{n-1}=k-1$ and for $i=2,3, \ldots, n$ either $x_{i}-x_{i-2}=1$ or $x_{i}=x_{i-1}$. Thus, $x_{i}-x_{i-1} \leq 1$. If for some i we have $x_{i}-x_{i-1}=x_{i-1}-x_{i-2}=1$ then $x_{i}-x_{i-2}=2$, a contradiction. It means that in the sequence the length of each block of coinciding elements is at least 2 . In order to construct a sequence we should determine smallest indices for which the sequence element is equal to $2,3, \ldots, k-1$. Evidently the number of choices is equal to the number of integer solutions of the equation $t_{1}+t_{2}+\cdots+t_{k-1}=n$, where each term is a positive integer exceeding 1. Thus the answer is $\binom{n-2(k-1)+k-1-1}{k-2}=\binom{n-k}{k-2}$.

Case 2: $x_{1} \geq 2$. Since the sequence consists of k distinct integers we get

$$
\begin{equation*}
x_{n} \geq x_{1}+k-2 \text { and } x_{n-1} \geq x_{1}+k-3 \tag{4}
\end{equation*}
$$

Now by (2) we get

$$
\sum_{i=2}^{n} x_{i}\left(x_{i}-x_{i-2}\right) \geq\left(x_{1}+k-2\right)^{2}-2 x_{1}
$$

Therefore,

$$
0=\sum_{i=2}^{n} x_{i}\left(x_{i}-x_{i-2}\right)-\left(k^{2}-2\right) \geq\left(x_{1}-2\right)\left(x_{1}+2 m-4\right)-2
$$

If $x_{1}>2$ then the right hand side is positive, a contradiction. Therefore, $x_{1}=2$. Since $x_{1}=2$ we get $x_{n} \geq k, x_{n-1} \geq k-1$. If the least inequalities are not equalities then by (2) $\sum_{i=2}^{n} x_{i}\left(x_{i}-x_{i-2}\right)>k^{2}-2$. Therefore, $x_{n}=k$ and $x_{n-1}=k-1$. Thus, the new year sequence takes all values from 1 to k and $x_{i}-x_{i-1} \leq 1$. Therefore, the only possible nonzero value of the expression $\left(x_{i}-x_{i-2}-1\right)\left(x_{i}-x_{i-1}\right)$ in (1) is 1 . Thus, the only possibility for $\sum_{i=2}^{n} x_{i}\left(x_{i}-x_{i-2}\right)=\left(k^{2}-2\right)$ is that for some two indices $\left(x_{i}-x_{i-2}-1\right)\left(x_{i}-x_{i-1}\right)=1$: $x_{i}-x_{i-1}=x_{i-1}-x_{i-2}=1$ for two values of i. It means that in the sequence the length of each block of coinciding elements is at least 2 but there are two blocks with length 1. In order to construct a sequence we should determine the values of elements in blocks of length 1 and the smallest indices for which the sequence element is equal to $3, \ldots, k-1$. Evidently the number of choices is equal to the number of solutions of the equation $t_{1}+t_{2}+\cdots+t_{k-4}=n-3$, where each term is a positive integer exceeding 1 . Thus the answer is $\binom{k-2}{2}\binom{n-3-2(k-4)+k-4-1}{k-2}=\binom{k-2}{2}\binom{n-k}{k-5}$. Done.

