Bilkent University

 Department of Mathematics
Problem Of The Month

October 2017

Problem:

Find all pairs (m, n) of positive integers satisfying

$$
m^{6}=n^{n+1}+n-1 .
$$

Solution: Answer: $(m, n)=(1,1)$.
If $n=1$, the only solution is $(m, n)=(1,1)$. Let $n>1$.
n is not odd, otherwise since $2 n^{\frac{n+1}{2}}+1>n^{\frac{n+1}{2}}>n>n-1>0$ we get

$$
\left(n^{\frac{n+1}{2}}\right)^{2}<\left(m^{3}\right)^{2}=n^{n+1}+n-1<\left(n^{\frac{n+1}{2}}+1\right)^{2}
$$

and $\left(m^{3}\right)^{2}$ is strictly between two consecutive squares.
$n \not \equiv 2(\bmod 3)$, otherwise since

$$
3 n^{\frac{2(n+1)}{3}}+3 n^{\frac{n+1}{3}}+1>n^{\frac{2(n+1)}{3}}>n>n-1>0
$$

we get

$$
\left(n^{\frac{n+1}{3}}\right)^{3}<\left(m^{2}\right)^{3}=n^{n+1}+n-1<\left(n^{\frac{n+1}{3}}+1\right)^{3}
$$

and $\left(m^{2}\right)^{3}$ is strictly between two consecutive cubes.
$n \not \equiv 0(\bmod 3)$, otherwise

$$
n^{n+1}+n-1 \equiv-1 \equiv\left(m^{3}\right)^{2} \quad(\bmod 3) .
$$

Therefore, $n \equiv 4(\bmod 6)$. Now

$$
m^{6}+3=n^{n+1}+n+2 \equiv(-1)^{n+1}+1 \quad(\bmod n+1)
$$

since n is even we get that $m^{6}+3 \equiv 0(\bmod n+1)$. Suppose that prime number p divides $n+1$. Since $n+1 \equiv 5(\bmod 6)$ we get $p>3$ and since $m^{6} \equiv-3(\bmod p)$ we see that -3 is a quadratic residue modulo p. Since $p>3$ we get $p \equiv 1(\bmod 3)$. Since all prime divisors of $n+1$ are 1 modulo 3 we get that $n+1 \equiv 1(\bmod 3)$ and therefore $n \equiv 0$ $(\bmod 3)$ which contradicts $n \equiv 4(\bmod 6)$. The only solution is $(m, n)=(1,1)$.

