

Bilkent University
Department of Mathematics

Problem Of The Month

April 2017

Problem:

For each real number t let $g(t)$ be the total number of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x y+f(y))=f(x) y+t
$$

for all real numbers x, y. Determine the function $g(t)$.

Solution:

The function $f(x)=0$, for all $x \in \mathbb{R}$ is a solution for $t=0$. Assume that there exists a number x_{0} such that $f\left(x_{0}\right) \neq 0$. Set $x=x_{0}$ to get $f\left(x_{0} y+f(y)\right)=f\left(x_{0}\right) y+t$. This shows that f is onto.

Setting $x=0$ yields $f(f(y))=f(0) y+t$. If $f(0)=0$, then $f(f(y))=t$ and since f is onto, we get $f(x)=t$, for all $x \in \mathbb{R}$ which is a solution iff $t=0$. Assume $f(0) \neq 0$ which implies that f is one-to-one.

Since f is onto, there exists a number c satisfying $f(c)=0$. Set $x=c$ and obtain $f(c y+f(y))=t$. We know that f is one-to-one and hence $c y+f(y)$ should be constant for all $y \in \mathbb{R}$. This implies that $f(y)=k-c y$, for all $y \in \mathbb{R}$ for some constants k, c. By putting this in the original equation we have $c^{2}=k$ and $k-k c=t$. Therefore we get $t=c^{2}-c^{3}$. It is clear that $g(c)=c^{2}-c^{3}=c^{2}(1-c)$ is decreasing on $[-\infty, 0]$ and $[1, \infty)$. By AM-GM for $0<c<1$, we have $g(c) \leq 4 / 27$. Thus, for $t<0$ and $t>4 / 27$, there exists a unique c satisfying $t=c^{2}-c^{3}$ and for $0<t<4 / 27$, there exist three such c values. For $t=0$ and $t=4 / 27$, there are exactly two such c values:
$g(t)= \begin{cases}1 & \text { if } t<0, t>\frac{4}{27} \\ 2 & \text { if } t=0, t=\frac{4}{27} \\ 3 & \text { if } 0<t<\frac{4}{27}\end{cases}$

