Bilkent University
 Department of Mathematics

Problem Of The Month

March 2017

Problem:

Let $S_{r}(n)=1^{r}+2^{r}+\cdots+n^{r}$ where r is a rational number and n is a positive integer. Find all triples (a, b, c) where a and b are positive rational numbers and c is a positive integer for which there exist infinitely many positive integers n satisfying $S_{a}(n)=\left(S_{b}(n)\right)^{c}$.

Solution: The answer: $a=3, b=1, c=2$ and $a=b \in \mathbb{Q}^{+}, c=1$.
By using of Bernoulli's inequality and induction on n we can easily get the inequality

$$
\frac{n^{r+1}}{r+1} \leq S_{r}(n) \leq \frac{(n+1)^{r+1}}{r+1}
$$

for all positive integer n and positive rational number r.
As $S_{a}(n)=\left(S_{b}(n)\right)^{c}$ letting $r=a$ and $r=b$ we get

$$
\frac{n^{a+1}}{a+1} \leq\left(\frac{(n+1)^{b+1}}{b+1}\right)^{c} \text { and }\left(\frac{n^{b+1}}{b+1}\right)^{c} \leq \frac{(n+1)^{a+1}}{a+1}
$$

Therefore, the inequalities

$$
\frac{n^{(b+1) c}}{(n+1)^{a+1}} \leq \frac{(b+1)^{c}}{a+1} \leq \frac{(n+1)^{(b+1) c}}{n^{a+1}}
$$

are held for infinitely many positive integers n. By letting $n \rightarrow \infty$ in the last inequality, we obtain that $(b+1) c=a+1$ and $(b+1)^{c}=a+1$. If $c=1$, then $a=b$ and we get the trivial solutions.

If $c>1$, then $c=(b+1)^{c-1}$ implies that b is an integer since c is an integer. As $b \geq 1$, we get that $c \geq 2^{c-1}$ and hence $c=2$. This leads to $b=1, a=3$ and this solution clearly satisfies the conditions.

