

Bilkent University
Department of Mathematics

Problem Of The Month

Febuary 2017

Problem:

Find the greatest real number M such that

$$
\left(x^{2}+y^{2}\right)^{3} \geq M\left(x^{3}+y^{3}\right)(x y-x-y)
$$

for all real numbers x, y satisfying $x+y \geq 0$.

Solution: The answer: The greatest $M=32$.
$x=y=4$ yields $M \leq 32$. Let us prove that

$$
\left(x^{2}+y^{2}\right)^{3} \geq 32\left(x^{3}+y^{3}\right)(x y-x-y)
$$

Let $s=x^{2}+y^{2}$ and $t=x+y$. We should show that for all $2 s \geq t^{2}$ and $t \geq 0$ the inequality

$$
s^{3} \geq 8 t\left(3 s-t^{2}\right)\left(t^{2}-2 t-s\right)
$$

holds. Now let $s=r t$. This transforms the required inequality to the inequality

$$
r^{3} \geq 8(3 r-t)(t-2-r)
$$

for $2 r \geq t \geq 0$.
Since for all $2 r \geq t \geq 0$ we have
$r^{3}-8(3 r-t)(t-2-r)=8(t-(2 r+1))^{2}+r^{3}-8 r^{2}+16 r-8 \geq r^{3}-8 r^{2}+16 r=r(r-4)^{2} \geq 0$ the proof is completed.

