

Bilkent University Department of Mathematics

## PROBLEM OF THE MONTH

January 2017

## Problem:

Determine all triples (m, n, p) where m, n are positive integers and p is a prime number such that

$$\frac{5^m + 2^n p}{5^m - 2^n p}$$

is a perfect square.

## Solution: The answer is

The answer is (m, n, p) = (2, 3, 3), (1, 1, 2) or (2, 2, 5).

Let  $\frac{5^m + 2^n p}{5^m - 2^n p} = k^2$  for some positive integer k. Note that  $5^m - 2^n p | 5^m + 2^n p$  implies that  $5^m - 2^n p | 2 \cdot 5^m$ . Then as  $5^m - 2^n p$  is odd,  $5^m - 2^n p | 5^m$  and hence  $5^m - 2^n p = 5^r$  for some non-negative integer r.

Case 1: r = 0 i.e.  $5^m - 2^n p = 1$ .

If  $n \geq 3$ , then  $5^m \equiv 1 \pmod{8}$  and hence m = 2s for some positive integer s. Then  $5^{2s} \equiv 1 \pmod{3}$  and we have  $2^n p \equiv 0 \pmod{3}$ . Thus, p = 3 and  $(5^s - 1)(5^s + 1) = 3 \cdot 2^n$ . Observe that  $5^s + 1 \equiv 2 \pmod{4}$  and has an odd divisor greater than 3 when s > 1. Therefore s = 1 and hence m = 2, n = 3 and k = 7.

If n = 2, then  $8p = (5^m + 2^2p) - (5^m - 2^2p) = k^2 - 1$ . Therefore k = 2l + 1 for some positive integer l and 2p = l(l + 1). Then clearly p = 3 and hence  $5^m = 13$  which yields a contradiction.

If n = 1, then  $4p = (5^m + 2^1p) - (5^m - 2^1p) = k^2 - 1$ . Therefore k = 2l + 1 for some positive integer l and p = l(l+1). Then clearly l = 1, p = 2 and hence k = 3, m = 1.

Case 2:  $r \geq 1$ .

Then  $5|2^n p$  and hence p = 5. Therefore,  $5^{m-1} - 2^n = 5^{r-1}$  implies that r = 1 since m > r and  $5^{r-1}|2^n$ . Thus, we have  $5^{m-1} - 2^n = 1$ . Clearly  $n \neq 1$  and if n = 2, then m = 2 and k = 3.

If  $n \ge 3$ , then  $5^{m-1} \equiv 1 \pmod{8}$  and hence m-1 = 2s for some positive integer s. Then  $(5^s - 1)(5^s + 1) = 2^n$ . Observe that  $5^s + 1 \equiv 2 \pmod{4}$  and has an odd divisor greater than 1 when  $s \ge 1$ . Therefore s = 0 and hence  $2^n = 0$  which yields a contradiction.