Bilkent University

Department of Mathematics

Problem Of The Month

November 2016

Problem:

Find the greatest real number M such that the inequality

$$
a^{2}+b^{2}+c^{2}+3 a b c \geq M(a b+b c+c a)
$$

holds for all nonnegative real numbers a, b, c satisfying $a+b+c=4$.

Solution: The answer is $M=2$.
Letting $a=0$ and $b=c=2$ we obtain $M \leq 2$. We will show that $M=2$ works.
Without loss of generality we may assume that $\max \{a, b, c\}=c$. Let $x=a+b$ and $y=a b$.
We have $c \geq \frac{a+b+c}{3}=\frac{4}{3}$ and hence $x=a+b \leq \frac{8}{3}$.
Then $a^{2}+b^{2}+c^{2}+3 a b c \geq 2(a b+b c+c a) \Longleftrightarrow x^{2}-2 y+(4-x)^{2}+3 y(4-x) \geq$ $2(y+x(4-x)) \Longleftrightarrow 4(x-2)^{2}+y(8-3 x) \geq 0$. Since $x \leq \frac{8}{3}$ we are done.

