

Bilkent University
 Department of Mathematics

Problem Of The Month

October 2016

Problem:

Let $S=\{1,2, \ldots, 2016\}$ and $A_{1}, A_{2}, \ldots, A_{k}$ be subsets of S such that for all $1 \leq i<j \leq k$ exactly one of the sets $A_{i} \cap A_{j}, A_{i}^{\prime} \cap A_{j}, A_{i} \cap A_{j}^{\prime}, A_{i}^{\prime} \cap A_{j}^{\prime}$ is empty. Determine the maximum possible value of k.
[For $A \subset S, A^{\prime}$ denotes the set containing all elements of S not included in A].

Solution: The answer is $2 \cdot 2016-3=4029$.
By the method of induction we will show that for $S=\{1,2, \ldots, n\}$ the answer is $2 n-3$. First of all, note that the collection $\{1\},\{2\}, \ldots\{n\},\{1,2\},\{1,2,3\}, \ldots\{1,2,3, \ldots, n-2\}$ consisting of $2 n-3$ subsets readily satisfies the conditions.

For $n=2$, it is clear that k is at most 1 . For $n=3$, it is easy to check that $k \leq 3$. Let us assume that the answer is $2 n-5$ for $n-1 \geq 3$. Let $M=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ be a maximal collection satisfying the conditions for n. By the example above, $k \geq 2 n-3$. Note that neither \emptyset nor S is in M. If none of $\{i\}$ and $\{i\}^{\prime}$ is in M for some $1 \leq i \leq n$, then we could add one of them and enlarge the collection. Clearly both $\{i\}$ and $\{i\}^{\prime}$ can not be in M and hence exactly one of $\{i\}$ and $\{i\}^{\prime}$ belongs to M for all $1 \leq i \leq n$. Note that if $X \in M$, then we can replace it by X^{\prime}. Therefore we may assume that $\left|A_{i}\right| \leq \frac{n}{2}$ for all $1 \leq i \leq n$.

Since $2 n-3>n$, we can choose a set $A \in M$ such that $|A| \geq 2$ and $|A| \leq|B|$ for all $B \in M$ with $|B| \geq 2$. Without loss of generality we may assume that $1,2 \in A$. Then consider any set B in M other than $\{1\},\{2\}$ and A. If $A \cap B=\emptyset$, then $1,2 \notin B$. If $A \cap B^{\prime}=\emptyset$, then $A \subset B$ and hence $1,2 \in B$. If $A^{\prime} \cap B=\emptyset$, then $B \subset A$ and hence $|B|=1$ by the choice of A. Thus, $1,2 \notin B$. If $A^{\prime} \cap B^{\prime}=\emptyset$, then $A \cup B=E$. But when n is odd $|A|,|B| \leq \frac{n-1}{2}$ and hence $|A \cup B| \leq n-1$. And when n is even, the only possible
case is $|A|=|B|=\frac{n}{2}$, but then $B=A^{\prime}$ and $A \cap B=\emptyset$.
Therefore we conclude that $\{1,2\} \subset B$ or $\{1,2\} \cap B=\emptyset$ for all B in M other than $\{1\}$ and $\{2\}$. Hence by removing $\{1\}$ and $\{2\}$ from M and removing 1 from each element of M we obtain a new maximal collection for $n-1$ element set $S=\{2,3, \ldots, n\}$. By the induction hypothesis $k-2 \leq 2 n-5$. Since $k \geq 2 n-3$ we get $k=2 n-3$. Done.

