

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

July-August 2016

Problem:

Find all functions $f : \mathbb{Z}^+ \to \mathbb{Z}^+$ satisfying

$$f(mn) = f(m)f(n)$$
 and $m+n \mid f(m) + f(n)$

for all $m, n \in \mathbb{Z}^+$.

Solution:

First of all, note that $f(1) = f(1)^2 \Rightarrow f(1) = 1$. So, $2n + 1 \mid f(2n) + f(1) = f(2) \cdot f(n) + 1 \Rightarrow \gcd(2n + 1, f(2)) = 1$ for all n. This means that f(2) has no odd prime divisor, so $f(2) = 2^k$. Furthermore, $3 \mid 1 + f(2) = 1 + 2^k \Rightarrow k$ is odd. Also note, $f(2^m) = f(2) \cdot f(2) \cdots f(2) = 2^{km}$ for all m. Now, for all m and $n, 2^m + n \mid f(2^m) + f(n) = 2^{km} + f(n)$. But k is odd, so $2^m + n \mid 2^{km} + n^k$. Thus $2^m + n \mid f(n) - n^k$. But this is valid for all m, so $f(n) - n^k = 0 \Rightarrow f(n) = n^k$.

We have now proven that $f(n) = n^k$ for all n for some fixed odd number k. On the other hand, it is easily seen that functions of this form satisfy the given conditions.