

Bilkent University
Department of Mathematics

Problem Of The Month

July-August 2016

Problem:

Find all functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$satisfying

$$
f(m n)=f(m) f(n) \text { and } m+n \mid f(m)+f(n)
$$

for all $m, n \in \mathbb{Z}^{+}$.

Solution:

First of all, note that $f(1)=f(1)^{2} \Rightarrow f(1)=1$. So, $2 n+1 \mid f(2 n)+f(1)=$ $f(2) \cdot f(n)+1 \Rightarrow \operatorname{gcd}(2 n+1, f(2))=1$ for all n. This means that $f(2)$ has no odd prime divisor, so $f(2)=2^{k}$. Furthermore, $3 \mid 1+f(2)=1+2^{k} \Rightarrow k$ is odd. Also note, $f\left(2^{m}\right)=f(2) \cdot f(2) \cdots f(2)=2^{k m}$ for all m. Now, for all m and $n, 2^{m}+n \mid f\left(2^{m}\right)+f(n)=$ $2^{k m}+f(n)$. But k is odd, so $2^{m}+n \mid 2^{k m}+n^{k}$. Thus $2^{m}+n \mid f(n)-n^{k}$. But this is valid for all m, so $f(n)-n^{k}=0 \Rightarrow f(n)=n^{k}$.

We have now proven that $f(n)=n^{k}$ for all n for some fixed odd number k. On the other hand, it is easily seen that functions of this form satisfy the given conditions.

