Bilkent University

Department of Mathematics

Problem Of The Month

June 2016

Problem:

Show that for all nonnegative real numbers a, b, c satisfying $a^{2}+b^{2}+c^{2} \leq 3$ the following inequality holds:

$$
(a+b+c)(a+b+c-a b c) \geq 2\left(a^{2} b+b^{2} c+c^{2} a\right)
$$

Solution: Let us prove three preliminary lemmas:
Lemma 1.

$$
a+b c \leq 2
$$

Proof. It is clear that $b c \leq 2$ because otherwise we would have

$$
3 \geq a^{2}+b^{2}+c^{2}>b^{2}+c^{2} \geq 2 b c>4 .
$$

Then it is enough to show that

$$
3-b^{2}-c^{2} \leq(2-b c)^{2}
$$

which is equivalent to

$$
(b c-1)^{2}+(b-c)^{2} \geq 0
$$

Lemma 2.

$$
\sqrt{\left(4-a^{2}\right)\left(4-c^{2}\right)} \geq a c+2 b
$$

Proof. It is clear that both a and c are less than 2. Then it is enough to show that

$$
\left(4-a^{2}\right)\left(4-c^{2}\right)-(a c+2 b)^{2}=16-4\left(a^{2}+b^{2}+c^{2}+a b c\right) \geq 0
$$

which is true since by AM-GM we have

$$
a b c \leq\left(\frac{a^{2}+b^{2}+c^{2}}{3}\right)^{3 / 2} \leq 1
$$

Lemma 3.

$$
a^{2}+b^{2}+c^{2} \geq a^{2} b+b^{2} c+c^{2} a
$$

Proof. By AM-GM, we have

$$
\begin{equation*}
a^{2}+\frac{1}{4}\left(a b+c^{2}\right)^{2} \geq a^{2} b+c^{2} a \tag{1}
\end{equation*}
$$

By AM-GM and Lemma 2, we obtain that

$$
\begin{gather*}
\frac{1}{4}\left[\left(4-a^{2}\right) b^{2}+\left(4-c^{2}\right) c^{2}\right] \geq \frac{1}{2} \sqrt{\left(4-a^{2}\right)\left(4-c^{2}\right)} b c \\
\geq \frac{1}{2}(a c+2 b) b c=b^{2} c+\frac{1}{2} a b c^{2} \tag{2}
\end{gather*}
$$

By summing up (1) and (2) we complete the proof.
By Lemma 1 we get that

$$
a^{2} b+a b^{2} c \leq 2 a b, \quad b^{2} c+a b c^{2} \leq 2 b c, \quad c^{2} a+a^{2} b c \leq 2 c a
$$

and by summing up these inequalities, we obtain that

$$
2(a b+b c+c a) \geq a^{2} b+b^{2} c+c^{2} a+a b c(a+b+c)
$$

Using Lemma 3, we conclude that

$$
\begin{gathered}
(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a) \\
\geq a^{2} b+b^{2} c+c^{2} a+\left[a^{2} b+b^{2} c+c^{2} a+a b c(a+b+c)\right]
\end{gathered}
$$

which can be written as

$$
(a+b+c)(a+b+c-a b c) \geq 2\left(a^{2} b+b^{2} c+c^{2} a\right)
$$

Thus, we are done.

