

# Bilkent University <br> Department of Mathematics 

## Problem Of The Month

April 2016

## Problem:

Let $A_{1}, A_{2}, \ldots, A_{k}$ be distinct subsets of $\{1,2, \ldots, 2016\}$ such that for each $1 \leq i<j \leq k$ the intersection $A_{i} \cap A_{j}$ forms an arithmetic progression. Find the maximal value of $k$.

Solution: The answer: $\binom{2016}{0}+\binom{2016}{1}+\binom{2016}{2}+\binom{2016}{3}$. It can be readily seen that the collection of all subsets having at most 3 elements satisfies the conditions.

In order to complete the solution we show that the number of subsets having at least 3 elements is not greater than $\binom{2016}{3}$. Consider any subset $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ having at least 3 elements and let $a_{1}<a_{2}<\ldots, a_{n}$. We assign a label $L(A)=\left(a_{1}, a_{2}, c\right)$ to each such subset, where
if $A$ is an arithmetic progression then $c=a_{n}$
if not then $c$ is the first element breaking arithmetic progression $\left(a_{1}, a_{2}, \ldots\right)$.
For example if $A=\{3,6,9,12,19,29\}$ then $L(A)=\{3,6,19\}$.
Now note that different 3 or more element sets have different labels and therefore there are at most $\binom{2016}{3}$ such subsets. Done.

