

Bilkent University
Department of Mathematics

Problem Of The Month

March 2016

Problem:

Show that for each square free integer $n>1$ there are prime p and integer m such that

$$
p \mid n \quad \text { and } \quad n \mid p^{2}+p \cdot m^{p}
$$

Solution: Let p be the greatest prime divisor of n. We want to show that there exists m with $m^{p} \equiv-p\left(\bmod \frac{n}{p}\right)$. Then the two problem conditions will hold.
Let $m_{1}, m_{2}, \ldots, m_{t}$ be all the numbers between 0 and $\frac{n}{p}$ that are coprime to $\frac{n}{p}$. If all the numbers $m_{1}^{p}, m_{2}^{p}, \ldots, m_{t}^{p}$ happen to be different $\left(\bmod \frac{n}{p}\right)$, one would get $\left\{m_{1}^{p}, m_{2}^{p}, \ldots, m_{t}^{p}\right\} \equiv$ $\left\{m_{1}, m_{2}, \ldots, m_{t}\right\}\left(\bmod \frac{n}{p}\right)$. But, $-p$ is an element of the right-hand side set, so it must be in the left-hand side set as well. This implies the existence of an integer m with the desired properties.
Thus, it is now sufficient to prove that no two of the numbers $m_{1}^{p}, m_{2}^{p}, \ldots, m_{t}^{p}$ are the same. Suppose otherwise and let $x^{p} \equiv y^{p}\left(\bmod \frac{n}{p}\right)$ where $x \not \equiv y\left(\bmod \frac{n}{p}\right) \Rightarrow s^{p} \equiv 1$ $\left(\bmod \frac{n}{p}\right)$ and $s \not \equiv 1\left(\bmod \frac{n}{p}\right)$ where $s \equiv \frac{x}{y}$.
Let d be the least positive integer such that $s^{d} \equiv 1\left(\bmod \frac{n}{p}\right)$. Then, one has $d>1$, $d \mid p$ and $d\left|\phi\left(\frac{n}{p}\right) \Rightarrow p\right| \phi\left(\frac{n}{p}\right)$. But $\phi\left(\frac{n}{p}\right)=\left(q_{1}-1\right) \cdots\left(q_{k}-1\right)$ where q_{1}, \ldots, q_{k} are the other prime divisors of n. By choice of p, one has $p>q_{1}, \ldots, q_{k}$ and this contradicts with $p \mid\left(q_{1}-1\right) \cdots\left(q_{k}-1\right)$. Done.

Note. There is another, more constructive way of obtaining m with the desired properties. Keeping notation from previous part, the condition $m^{p} \equiv-p\left(\bmod \frac{n}{p}\right)$ can be equivalently characterized, by Chinese Remainder Theorem, as a set of conditions:

$$
m^{p} \equiv-p \quad\left(\bmod q_{1}\right), \ldots, m^{p} \equiv-p \quad\left(\bmod q_{k}\right)
$$

But these conditions are symmetric, so it is sufficient to demonstrate one. In other words, one needs to prove that there exists m with $m^{p} \equiv-p(\bmod q)$ where $p>q$ are prime numbers. Let g be a primitive root $(\bmod q), r$ be such that $g^{r} \equiv-p(\bmod q)$ and s be a multiplicative inverse of $p(\bmod q-1)$. Note that p is indeed invertible $(\bmod q-1)$ as $p>q$ implies $\operatorname{gcd}(p, q-1)=1$. Then $m=g^{r s}$ clearly works.

