Bilkent University

Department of Mathematics

Problem Of The Month

February 2016

Problem:

Find the greatest real number T satisfying

$$
\frac{\left(x^{2}+y\right)\left(x+y^{2}\right)}{(x+y-1)^{2}}+\frac{\left(y^{2}+z\right)\left(y+z^{2}\right)}{(y+z-1)^{2}}+\frac{\left(z^{2}+x\right)\left(z+x^{2}\right)}{(z+x-1)^{2}}-2(x+y+z) \geq T
$$

for all real numbers x, y and z such that $x+y \neq 1, y+z \neq 1, z+x \neq 1$.

Solution: The answer: $T=-\frac{3}{4}$. FIrst of all, let us show that for all real $x, y \neq 1$

$$
\frac{\left(x^{2}+y\right)\left(x+y^{2}\right)}{(x+y-1)^{2}} \geq x+y-\frac{1}{4}
$$

By putting $x+y=a$ and $x y=b$ we get

$$
4\left(b^{2}+b(1-3 a)+a^{3}\right) \geq(a-1)^{2}(4 a-1)
$$

and the proof follows:

$$
4\left(b^{2}+b(1-3 a)+a^{3}\right)-(a-1)^{2}(4 a-1)=(2 b+3 a-1)^{2} \geq 0
$$

The equality is held at $2 b+3 a=2 x y+3(x+y)=1$. By summing the inequalities (\dagger) for pairs $(x, y),(y, z)$ we get

$$
\frac{\left(x^{2}+y\right)\left(x+y^{2}\right)}{(x+y-1)^{2}}+\frac{\left(y^{2}+z\right)\left(y+z^{2}\right)}{(y+z-1)^{2}}+\frac{\left(z^{2}+x\right)\left(z+x^{2}\right)}{(z+x-1)^{2}}-2(x+y+z) \geq-\frac{3}{4}
$$

Therefore, $T \geq-\frac{3}{4}$. Now note that at $x=y=\frac{3+\sqrt{7}}{2}$ we have $2 x y+3(x+y)=1$ and therefore $T \leq-\frac{3}{4}$. Done.

Remark: One can find all triples of real numbers x, y and z for which the equality holds. These triples satisfy

$$
\begin{aligned}
& 2 x y+3(x+y)=1 \\
& 2 y z+3(y+z)=1 \\
& 2 z x+3(z+x)=1
\end{aligned}
$$

By taking side by side difference of first two equations we get

$$
(x-z)(2 y+3)=0
$$

If $y=-3 / 2$ then from the second equation we get $1=2 y z+3 y+3 z=3 y$ and $y=1 / 3$, a contradiction. Therefore, $x=z$. Similarly we get $x=y=z=u$ and $2 u^{2}+6 u=1$. Thus, the equality holds at

$$
x=y=z=\frac{3+\sqrt{7}}{2} \quad \text { ve } \quad x=y=z=\frac{3-\sqrt{7}}{2} .
$$

