

Bilkent University
Department of Mathematics

Problem Of The Month

January 2016

Problem:

Find all positive integer numbers n such that for any positive integer a relatively prime to n the number $2 n^{2}$ divides $a^{n}-1$.

Solution:

Let $p>2$ be a prime divisor of n (if any) and let p^{m} be the greatest power of p that divides $n: v_{p}(n)=m$. Let us choose a such that $a \equiv p+1\left(\bmod p^{2}\right)$ and $a \equiv 1\left(\bmod \frac{n}{p^{m}}\right)$. Since $p \mid a-1$, one gets $v_{p}\left(a^{n}-1\right)=v_{p}(a-1)+v_{p}(n)=m+1$. But $a^{n}-1$ is divisible by n^{2}, so $m+1 \geq 2 m \Rightarrow m \leq 1 \Rightarrow m=1$. Now let 2^{m} be the greatest power of 2 that divides n. Choose a such that $a \equiv 5(\bmod 8)$ and $a \equiv 1\left(\bmod \frac{n}{2^{m}}\right)$. Since $4 \mid a-1$, one gets $v_{2}\left(a^{n}-1\right)=v_{2}(a-1)+v_{2}(n)=m+2$. Much like the same way as above, $m+2 \geq 2 m+1 \Rightarrow m \leq 1$. Thus, n is a square-free integer.

Now let p be any prime divisor of n and choose a such that it is congruent to a primitive root $(\bmod p)$ and congruent to $1\left(\bmod \frac{n}{p}\right)$. Since $p \mid a^{n}-1$, one gets $p-1 \mid n$. In other words, $p \mid n$ implies $p-1 \mid n$. It is also easy to see that this condition together with the square-freeness of n is sufficient for the original condition to be true. Let $n=p_{1} \cdot p_{2} \cdots p_{k}$ (we assume $p_{1}<p_{2}<\ldots<p_{k}$). For each i, one has $p_{i}-1\left|n \Rightarrow p_{i}-1\right| p_{1} \cdot p_{2} \cdots p_{i-1}$. Since $n=1$ obviously doesn't satisfy the problem condition, $k \geq 1$.
As such, $p_{1}-1 \mid 1 \Rightarrow p_{1}=2$.
For $i=2, p_{2}-1 \mid p_{1}=2$ and $p_{2}>p_{1}=2$, therefore $p_{2}=3$.
For $i=3, p_{3}-1 \mid p_{1} \cdot p_{2}=6$ and $p_{3}>p_{2}=3$, therefore $p_{3}=7$.
For $i=4, p_{4}-1 \mid p_{1} \cdot p_{2} \cdot p_{3}=42$ and $p_{4}>p_{3}=7$, therefore $p_{4}=43$.
For $i=5, p_{5}-1 \mid p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4}=1806$ and $p_{5}>p_{4}=43$, which is impossible ($1807=13 \cdot 139$) so $k \leq 4$.
Thus, the possible values of n are: $2,6,42,1806$.

