Bilkent University
Department of Mathematics

Problem:

Let $a \geq b \geq 0$ be real numbers. Find the area of the region $K \in \mathbb{R}^{2}$ defined by

$$
K=\left\{(x, y) \in \mathbb{R}^{2}: x \geq y \geq 0 \quad \text { and } \quad x^{n}+y^{n} \leq a^{n}+b^{n} \text { for all positive integers } \mathrm{n}\right\} .
$$

Solution:

We will show that

$$
(x, y) \in K \quad \Longleftrightarrow \quad x+y \leq a+b \quad \text { and } \quad x \leq a .
$$

Firstly, consider a pair $(x, y) \in K$. By taking $n=0$, we get $x+y \leq a+b$. On the other hand, by letting $n \rightarrow \infty$, we find that

$$
x=\max \{x, y\}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{x^{n}+y^{n}}{2}} \leq \lim _{n \rightarrow \infty} \sqrt[n]{\frac{a^{n}+b^{n}}{2}}=\max \{a, b\}=a
$$

Now, assume that $x+y \leq a+b$ and $x \leq a$ for a pair (x, y). We need to prove that $x^{n}+y^{n} \leq a^{n}+b^{n}$ for all $n \in \mathbb{N}$. This inequality is equivalent to

$$
y^{n}-b^{n}=(y-b)\left(\sum_{i=0}^{n-1} y^{i} b^{n-1-i}\right) \leq(a-x)\left(\sum_{i=0}^{n-1} x^{i} a^{n-1-i}\right)=a^{n}-x^{n}
$$

which is true since $y-b \leq a-x$ and $0 \leq y \leq x \leq a, 0 \leq b \leq a$. Therefore, the set K can also be given by

$$
K=\left\{(x, y) \in \mathbb{R}^{2}: a \geq x \geq y \geq 0 \quad \text { and } \quad x+y \leq a+b\right\}
$$

Thus, the area of the region K is equal to

$$
\frac{(a+b)^{2}}{4}-\frac{b^{2}}{2}=\frac{a^{2}+2 a b-b^{2}}{4} .
$$

