

Bilkent University
Department of Mathematics

Problem Of The Month

October 2015

Problem: Prove that for all positive real numbers a, b, c satisfying $a^{2}+b^{2}+c^{2}+2 a b c \leq 1$, the following inequality holds:

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+2(a+b+c)
$$

Solution: Since the inequality is cyclic for a, b, c, it is sufficient to prove that

$$
\frac{1}{a}-2 b \geq \frac{c}{a}
$$

Since $(a-b)^{2} \geq 0$ we get

$$
2 a b+c^{2}+2 a b c \leq a^{2}+b^{2}+c^{2}+2 a b c \leq 1
$$

which is equivalent to

$$
(c+1)(c+2 a b-1) \leq 0 .
$$

Since $c>0$, we conclude that $c+2 a b \leq 1$ which is equivalent to (\dagger). Done.

