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Problem: Prove that for all positive real numbers a, b, c satisfying a2+b2+c2+2abc ≤ 1,
the following inequality holds:
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Solution: Since the inequality is cyclic for a, b, c, it is sufficient to prove that
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Since (a− b)2 ≥ 0 we get

2ab + c2 + 2abc ≤ a2 + b2 + c2 + 2abc ≤ 1

which is equivalent to

(c + 1)(c + 2ab− 1) ≤ 0.

Since c > 0, we conclude that c + 2ab ≤ 1 which is equivalent to (†). Done.


