Bilkent University Department of Mathematics

Problem: A real number t is said to be 10-quadratic if for some integer numbers a, b, c satisfying $1 \leq|a|,|b|,|c| \leq 10$ we have $a t^{2}+b t+c=0$. Find the smallest positive integer n for which at least one of the intervals

$$
\left(n-\frac{1}{3}, n\right) \text { and }\left(n, n+\frac{1}{3}\right)
$$

does not contain any 10-quadratic number.

Solution: Let s be the smallest integer satisfying the conditions. We will show that $s=11 . s \neq 1$ since the numbers $x_{1}=0.75$ and $x_{2}=1.25$ are quadratic as roots of the polynomials $P(x)=4 x^{2}+x-3$ and $Q(x)=4 x^{2}-x-5$, respectively. Let us show that $s>10$.

Let $3 \leq n \leq 10$. Consider the polynomial $P(x)=x^{2}+(1-n) x-n+1$ with a root

$$
x_{1}=\frac{n-1+\sqrt{n^{2}+2 n-3}}{2}<n .
$$

On the other hand

$$
x_{1}=\frac{n-1+\sqrt{n^{2}+2 n-3}}{2}>n-\frac{1}{3} \quad \Longleftrightarrow \quad n>\frac{7}{3} .
$$

Thus, $n-\frac{1}{3}<x_{1}<n$ holds.
Let $2 \leq n \leq 9$. Consider the polynomial $Q(x)=x^{2}+(1-n) x-n-1$ with a root

$$
x_{2}=\frac{n-1+\sqrt{n^{2}+2 n+5}}{2}>n .
$$

On the other hand

$$
x_{2}=\frac{n-1+\sqrt{n^{2}+2 n+5}}{2}<n+\frac{1}{3} \quad \Longleftrightarrow \quad n>\frac{5}{3} .
$$

Thus, $n<x_{2}<n+1 / 3$ holds.
Finally note that the polynomial $4 x^{2}-3 x-7$ has a root $\frac{7}{4} \in(2-1 / 3,2)$ and the polynomial $x^{2}-10 x-1$ has a root $5+\sqrt{26} \in(10,10+1 / 3)$. Thus, $s \geq 11$.

In order to show that $s=11$ we will show that the interval $(11,11+1 / 3)$ does not contain any quadratic number. Indeed, let x_{1}, x_{2} be the roots of the polynomial $P(x)=a x^{2}+b x+c$. By Vieta theorem

$$
x_{1}+x_{2}=-b / a \in[-10,10] \quad \text { and } \quad x_{1} x_{2}=c / a \in[-10,10] .
$$

If $11<x_{1}<11+1 / 3$ then

$$
-\frac{10}{11+1 / 3}<-\frac{10}{x_{1}} \leq x_{2} .
$$

Therefore

$$
10<-\frac{10}{11+1 / 3}+11<x_{1}+x_{2} \quad \text { which contradicts } \quad x_{1}+x_{2} \in[-10,10]
$$

We are done.

