

Bilkent University
 Department of Mathematics

Problem Of The Month

March 2015

Problem:

In each step one can choose two indices $1 \leq k, l \leq 100$ and transform the 100 tuple $\left(a_{1}, \ldots, a_{k}, \ldots, a_{l}, \ldots, a_{100}\right)$ into the 100 tuple $\left(a_{1}, \ldots, \frac{a_{k}}{2}, \ldots, a_{l}+\frac{a_{k}}{2}, \ldots, a_{100}\right)$ if a_{k} is an even number. We say that a permutation $\left(a_{1}, \ldots, a_{100}\right)$ of $(1,2, \ldots, 100)$ is good if starting from $(1,2, \ldots, 100)$ one can obtain it after finite number of steps. Find the total number of distinct good permutations of $(1,2, \ldots, 100)$.

Solution: The answer is 100 ! By the method of mathematical induction we prove that starting from $(1,2, \ldots, n)$ we can reach any permutation of $(1,2, \ldots, n)$ for any nonnegative value of n.

1. The case $n=2$ is clear.
2. Suppose that the statement is true for $n=r-1$. We will show that starting from $(1,2, \ldots, r)$ we can reach its arbitrary permutation $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$. Let s be an index such that $a_{s}=r$. First of all, we are going to place r into his desired place by proving that we can reach the permutation

$$
\begin{equation*}
(r-s+1, r-s+2, \ldots, r-2, r-1, r, 1,2, \ldots, r-s-1, r-s) \tag{1}
\end{equation*}
$$

Let $T(l)$ be the transformation when the half of the entry a_{l} has added to $a_{l+1}\left(a_{r+1} \equiv a_{1}\right)$:

$$
\left(a_{1}, \ldots, a_{l-1}, a_{l}, a_{l+1}, \ldots, a_{k}\right) \rightarrow\left(a_{1}, \ldots, a_{l-1}, \frac{a_{l}}{2}, a_{l+1}+\frac{a_{l}}{2}, \ldots, a_{r}\right)
$$

It can be readily seen that the series of transformations $T(2), T(3), \ldots, T(r)$ is a cyclic transformation: it shifts $(1,2, \ldots, r)$ to $(r, 1,2, \ldots, r-1)$. Similarly, the series $T(3), T(4), \ldots$, $T(r), T(1)$ will shift $(r, 1,2, \ldots, r-1)$ to $(r-1, r, 1,2, \ldots, r-2)$ and $T(4), T(5), \ldots, T(r), T(1)$, $T(2)$ will shift $(r-1, r, 1,2, \ldots, r-2)$ to $(r-2, r-1, r, 1,2, \ldots, r-3)$. Thus, after s similar shifts we will get the desired permutation (1). Now the entry r is correctly located, the set of remaining entries is $\{1,2, \ldots, r-1\}$ and by inductive hypothesis we can get the desired permutation $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$. Done.

