Problem Of The Month

November 2014

Problem:

Let $P_{i}(x)=x^{2}+b_{i} x+c_{i} ; i=1,2, \ldots, n$ be pairwise distinct polynomials of second degree so that for any $1 \leq i<j \leq n$ the polynomial $P_{i, j}(x)=P_{i}(x)+P_{j}(x)$ has only one real root. Find the maximal possible value of n.

Solution: The answer: $n=3$.
The polynomials $P_{1}(x)=x^{2}-4, P_{2}(x)=x^{2}-4 x+6$ and $P_{3}(x)=x^{2}-8 x+12$ satisfy the conditions: $P_{1}+P_{1}=2(x-1)^{2}, P_{1}+P_{3}=2(x-2)^{2}, P_{2}+P_{3}=2(x-3)^{2}$.

Suppose that there are four polynomials $P_{1}, P_{2}, P_{3}, P_{4}$ satisfying the conditions. Then $P_{1}+P_{2}=2\left(x-t_{12}\right)^{2}, P_{3}+P_{4}=2\left(x-t_{34}\right)^{2}, P_{1}+P_{3}=2\left(x-t_{13}\right)^{2}, P_{2}+P_{4}=2\left(x-t_{24}\right)^{2}$, where $t_{i j}$ is a common root of the polynomials P_{i} and P_{j}. Let $Q=P_{1}+P_{2}+P_{3}+P_{4}$. Then Q has two representation: $Q=2\left(x-t_{12}\right)^{2}+2\left(x-t_{34}\right)^{2}$ and $Q=2\left(x-t_{13}\right)^{2}+2\left(x-t_{24}\right)^{2}$. Let us equate linear and constant terms of both expressions of $Q: t_{12}+t_{34}=t_{13}+t_{24}=2 t$ and $t_{12}^{2}+t_{34}^{2}=t_{13}^{2}+t_{24}^{2}$. Suppose that $t_{12} \leq t_{34}$ and $t_{13} \leq t_{24}$ (other cases can be treated similarly). Then for some nonnegative Δ_{1} and Δ_{2} we have $t_{12}=t-\Delta_{1}, t_{34}=t+\Delta_{1}$, $t_{13}=t-\Delta_{2}, t_{24}=t+\Delta_{2}$. Now $t_{12}^{2}+t_{34}^{2}=t_{13}^{2}+t_{24}^{2}$ implies that $2 t^{2}+2 \Delta_{1}^{2}=2 t^{2}+2 \Delta_{2}^{2}$. Therefore, $\Delta_{1}=\Delta_{2}$ and $t_{12}=t_{13}$. Finally $t_{12}=t_{13}$ implies $P_{1}+P_{2}=P_{1}+P_{3}$ and consequently $P_{2}=P_{3}$. Contradiction shows that $n<4$. Done.

