Bilkent University
Department of Mathematics

## Problem Of The Month

October 2014

## Problem:

Show that there is a positive integer $p$ for which there exists a sequence of positive integers $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that

- each $x_{n}$ is a sum of at most $p$ powers of 2: $x_{n}=2^{l_{1}}+2^{l_{2}}+\cdots+2^{l_{k}}$, where $k \leq p$
and
-• each $x_{n}$ is divisible by $10^{n}$.
What is the minimal possible value of $p$ ?


## Solution:

The answer: $p=2$. First of all, since the power of 2 is not a multiple of $10, p=1$ does not satisfy the conditions. Now let us show that the sequence

$$
x_{n}=2^{n}+2^{2 \cdot 5^{n-1}+n} ; n=1,2, \ldots
$$

meets the conditions. Since $x_{n}=2^{n}\left(2^{2 \cdot 5^{n-1}}+1\right)$ by we prove by induction that $2^{2.5^{n-1}}+1$ is divisible by $5^{n}$.

- $n=1: 2^{2}+1$ is divisible by $5^{1}$.

०o Suppose that $2^{2 \cdot 5^{k-1}}+1=4^{5^{k-1}}+1$ is divisible by $5^{k}$. We have to show that $2^{2.5^{k}}+1$ is divisible by $5^{k+1}$. Let $t=4^{5^{k-1}}$. Then $2^{2 \cdot 5^{k}}+1=t^{5}+1=(t+1)\left(t^{4}-t^{3}+t^{2}-t+1\right)$. By inductive hypothesis the first factor $t+1$ is divisible by $5^{k}$. Thus, we have to show that $t^{4}-t^{3}+t^{2}-t+1$ is divisible by 5 . Since $t+1$ is divisible by $5, t=5 s-1$ and $t^{4}=t^{2}=1$ and $t^{3}=t=-1$ in $\bmod 5$. Therefore, $t^{4}-t^{3}+t^{2}-t+1$ is divisible by 5 .

The proof is completed.

