

Bilkent University
Department of Mathematics

Problem Of The Month

Term: October 2014

Show that there is a positive integer p for which there exists a sequence of positive integers $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that

- each x_{n} is a sum of at most p powers of 2: $x_{n}=2^{l_{1}}+2^{l_{2}}+\cdots+2^{l_{k}}$, where $k \leq p$ and
-• each x_{n} is divisible by 10^{n}.
What is the minimal possible value of p ?

