

Bilkent University
Department of Mathematics

Problem Of The Month

September 2014

Problem:

The increasing infinite sequence of positive integers $\left\{x_{i}\right\}_{i=1}^{\infty}$ is said to be n-sequence if for each x_{i} the smallest positive integer j for which $1+x_{i} j^{3}$ is a perfect cube is n. Show that for each positive integer n there exists a n-sequence.

Solution: Let us show that the increasing sequence $x_{i}=n^{6} i^{3}+3 n^{3} i^{2}+3 i$ meets the conditions. Indeed,

$$
\begin{equation*}
1+x_{i} n^{3}=1+\left(n^{6} i^{3}+3 n^{3} i^{2}+3 i\right) n^{3}=n^{9} i^{3}+3 n^{6} i^{2}+3 n^{3} i+1=\left(n^{3} i+1\right)^{3} \tag{1}
\end{equation*}
$$

In order to prove that $1+x_{i} j^{3}$ is not a perfect cube for all $0<j<n$ let us show that

$$
\left(n^{2} i j\right)^{3}<1+x_{i} j^{3}=1+n^{6} j^{3} j^{3}+3 n^{3} i^{2} j^{3}+3 i j^{3}<\left(n^{2} i j+1\right)^{3}
$$

The first inequality is equivalent to the obvious inequality $0<3 n^{3} i^{2} j^{3}+3 i j^{3}$. The second inequality is equivalent to the inequality $3 n^{3} i^{2} j^{3}+3 i j^{3}<3 n^{4} i^{2} j^{2}+3 n^{2} i j$, which in turn is the side by side sum of inequalities $3 n^{3} i^{2} j^{3}<3 n^{4} i^{2} j^{2}$ and $3 i j^{3}<3 n^{2} i j$ obviously held at $j<n$. Done.

