

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

September 2014

Problem:

The increasing infinite sequence of positive integers $\{x_i\}_{i=1}^{\infty}$ is said to be *n*-sequence if for each x_i the smallest positive integer j for which $1 + x_i j^3$ is a perfect cube is n. Show that for each positive integer n there exists a *n*-sequence.

Solution: Let us show that the increasing sequence $x_i = n^6 i^3 + 3n^3 i^2 + 3i$ meets the conditions. Indeed,

$$1 + x_i n^3 = 1 + (n^6 i^3 + 3n^3 i^2 + 3i)n^3 = n^9 i^3 + 3n^6 i^2 + 3n^3 i + 1 = (n^3 i + 1)^3$$
(1)

In order to prove that $1 + x_i j^3$ is not a perfect cube for all 0 < j < n let us show that

$$(n^2ij)^3 < 1 + x_ij^3 = 1 + n^6j^3j^3 + 3n^3i^2j^3 + 3ij^3 < (n^2ij + 1)^3$$

The first inequality is equivalent to the obvious inequality $0 < 3n^3i^2j^3 + 3ij^3$. The second inequality is equivalent to the inequality $3n^3i^2j^3 + 3ij^3 < 3n^4i^2j^2 + 3n^2ij$, which in turn is the side by side sum of inequalities $3n^3i^2j^3 < 3n^4i^2j^2$ and $3ij^3 < 3n^2ij$ obviously held at j < n. Done.