

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

July-August 2014

Problem:

Let a, b, c be nonnegative real numbers satisfying $a^2 + b^2 + c^2 = 1$. Prove that

$$\sqrt{a+b} + \sqrt{b+c} + \sqrt{c+a} \ge \sqrt{7(a+b+c)-3}$$

Solution:

Let a + b + c = t. Then since $1 = a^2 + b^2 + c^2 \le (a + b + c)^2$ we get that $t \ge 1$. Note that $ab + bc + ca = \frac{t^2 - 1}{2}$. Straightforward calculations show that

$$(\sqrt{a+b} + \sqrt{b+c} + \sqrt{c+a})^2 = 2t + 2(\sqrt{a^2 + \frac{t^2 - 1}{2}} + \sqrt{b^2 + \frac{t^2 - 1}{2}} + \sqrt{c^2 + \frac{t^2 - 1}{2}})(\dagger)$$

Now let us show that

$$\sqrt{a^2 + \frac{t^2 - 1}{2}} \ge a + \frac{t - 1}{2} \tag{(\dagger\dagger)}$$

Indeed, by squaring of positive sides of $(\dagger\dagger)$ we get an equivalent inequality

$$a^{2} + \frac{t^{2} - 1}{2} \ge a^{2} + a(t - 1) + \frac{(t - 1)^{2}}{4}$$

which in turn is equivalent to $(t-1)(t+3-4a) \ge 0$. Since $t \ge 1 \ge a$ ($\dagger \dagger$) is proved. By inserting the inequality ($\dagger \dagger$) for a, b and c into (\dagger) we get

$$(\sqrt{a+b} + \sqrt{b+c} + \sqrt{c+a})^2 \ge 7(a+b+c) - 3$$

The equality holds at t = 1 (equivalently (a, b, c) = (1, 0, 0), (0, 1, 0), (0, 0, 1)). The proof is completed.