Problem Of The Month

July-August 2014

Problem:

Let a, b, c be nonnegative real numbers satisfying $a^{2}+b^{2}+c^{2}=1$. Prove that

$$
\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a} \geq \sqrt{7(a+b+c)-3}
$$

Solution:

Let $a+b+c=t$. Then since $1=a^{2}+b^{2}+c^{2} \leq(a+b+c)^{2}$ we get that $t \geq 1$. Note that $a b+b c+c a=\frac{t^{2}-1}{2}$. Straightforward calculations show that

$$
(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a})^{2}=2 t+2\left(\sqrt{a^{2}+\frac{t^{2}-1}{2}}+\sqrt{b^{2}+\frac{t^{2}-1}{2}}+\sqrt{c^{2}+\frac{t^{2}-1}{2}}\right)(\dagger)
$$

Now let us show that

$$
\sqrt{a^{2}+\frac{t^{2}-1}{2}} \geq a+\frac{t-1}{2}
$$

Indeed, by squaring of positive sides of $(\dagger \dagger)$ we get an equivalent inequality

$$
a^{2}+\frac{t^{2}-1}{2} \geq a^{2}+a(t-1)+\frac{(t-1)^{2}}{4}
$$

which in turn is equivalent to $(t-1)(t+3-4 a) \geq 0$. Since $t \geq 1 \geq a(\dagger \dagger)$ is proved. By inserting the inequality ($\dagger \dagger$) for a, b and c into (\dagger) we get

$$
(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a})^{2} \geq 7(a+b+c)-3
$$

The equality holds at $t=1$ (equivalently $(a, b, c)=(1,0,0),(0,1,0),(0,0,1))$. The proof is completed.

