

Bilkent University
Department of Mathematics

Problem Of The Month

June 2014

Problem:

Find all triples of positive integers (a, b, c) satisfying $\left(a^{3}+b\right)\left(b^{3}+a\right)=2^{c}$.

Solution:

Obviously the parities of a and b can not be different. Suppose that a and b are both even: $a=2^{l}\left(2 a_{1}+1\right)$ and $b=2^{m}\left(2 b_{1}+1\right), l \leq m$. Then after cancelling by 2^{l} the left hand side of the equation becomes odd. Thus, a and b are both odd. If $a=b$ then the only solution is $a=b=1$. Assume $a>b$. Then $a^{3}+b>b^{3}+a$ and since both numbers are powers of $2, b^{3}+a$ divides $a^{3}+b$. Since $b^{3}+a$ also divides $b^{9}+a^{3}$ we get that $b^{3}+a$ divides their difference $b^{9}-b=b\left(b^{2}-1\right)\left(b^{2}+1\right)\left(b^{4}+1\right)$. Since $b^{3}+a$ is a power of 2 and $b^{2}+1 \geq 2$, $\left(b^{4}+1\right) \geq 2$ we get that $b^{3}+a$ divides $4\left(b^{2}-1\right)$ and consequently $b^{3}<4\left(b^{2}-1\right)$. Thus, $b \leq 3$. If $b=1$, then $a^{3}+1$ and $a+1$ both are powers of 2 . Then $\frac{a^{3}+1}{a+1}=a^{2}-a+1$ is also a power of 2 which is impossible for odd values of a exceeding 1 . If $b=3$ then $b^{3}+a$ divides $4\left(b^{2}-1\right)$ yields $27+a$ divides 32 and $a=5$. Thus, solutions are: $(1,1,2),(3,5,12),(5,3,12)$.

