

Bilkent University
Department of Mathematics

Problem Of The Month

May 2014

Problem:

The sequence of positive integers a_{1}, \ldots, a_{2014} is said to be good, if the following three conditions are held:

- $a_{i} \leq 2014$
- $a_{i} \neq a_{j}$ for all $i \neq j$
- $a_{i}+i \leq a_{j}+j$ for all $i<j$

Find the total number of good sequences.

Solution:

Let $f(n)$ be the total number of good sequences of length n. Readily $f(1)=1$. If for some good sequence $a_{1}=n$, then due to conditions all elements of the sequence are uniquely determined: $a_{2}=n-1, a_{3}=n-2, \ldots, a_{n}=1$. If for some good sequence $a_{k+1}=n$ for some $k, 1 \leq k \leq n-1$ then $n-a_{k+2} \leq 1$ and $a_{k+2}=n-1$. Similarly all elements a_{k+j} of the sequence for $3 \leq j \leq n-k$ are uniquely determined: $a_{k+j}=n+1-j$. Therefore, $a_{1}, a_{2}, \ldots, a_{k}$ should also be a good sequence. Now note that the concatenation of $a_{1}, a_{2}, \ldots, a_{k}$ and a_{k+1}, \ldots, a_{n} is also a good sequence. Thus, $f(n)=1+f(1)+f(2)+\cdots+f(n-1)$ and consequently $f(n)=2 f(n-1)$. Thus, $f(n)=2^{n-1}$ and the answer is 2^{2013}.

