

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

April 2014

Problem:

For a given integer $n \ge 3$, let S_1, S_2, \ldots, S_m be distinct subsets of the set $\{1, 2, \ldots, n\}$ such that for each $1 \le i, j \le m; i \ne j$ the sets $S_i \cap S_j$ contain exactly one element. Determine the maximal possible value of m for each n.

Solution:

The answer: m = n. The *n* sets $S_1 = \{1\}, S_2 = \{1, 2\}, \ldots, S_n = \{1, n\}$ readily meet the conditions. Let us show that $m \leq n$.

Let S_1, S_2, \ldots, S_m be distinct subsets satisfying the conditions. For each S_j we define n dimensional vector $v^j = (a_1^j, a_2^j, \ldots, a_n^j)$ such that

$$a_i^j = \left\{ \begin{array}{ll} 1 & if \ i \in S_j \\ 0 & if \ i \notin S_j \end{array} \right.$$

Let $|S_i|$ be the number of elements of S_i . We show that the vectors v^1, v^2, \ldots, v^m are linearly independent and hence $m \leq n$. On the contrary, w.l.o.g. suppose that

$$v^1 = \sum_{i=2}^m \alpha_i v^i \tag{1}$$

Let us fix an index $j \neq 1$. The dot product of both sides of (1) and v^j yields

$$1 = \sum_{i=2,3,...,m; i \neq j} \alpha_i + \alpha_j |S_j| = \sum_{i=2}^m \alpha_i + \alpha_j |S_j| - \alpha_j$$
(2)

The dot product of both sides of (1) and v^1 , yields

$$|S_1| = \sum_{i=2}^m \alpha_i \tag{3}$$

Now (2) and (3) give $1 = \alpha_j(|S_j| - 1) + |S_1|$. If $|S_j| = 1$, then obviously $m \le n$. Otherwise $\alpha_j \le 0$. Thus, for each $j \ne 1$ $\alpha_j \le 0$ which contradicts (1).