Bilkent University Department of Mathematics

Problem Of The Month

April 2014

Problem:

For a given integer $n \geq 3$, let $S_{1}, S_{2}, \ldots, S_{m}$ be distinct subsets of the set $\{1,2, \ldots, n\}$ such that for each $1 \leq i, j \leq m ; i \neq j$ the sets $S_{i} \cap S_{j}$ contain exactly one element. Determine the maximal possible value of m for each n.

Solution:

The answer: $m=n$. The n sets $S_{1}=\{1\}, S_{2}=\{1,2\}, \ldots, S_{n}=\{1, n\}$ readily meet the conditions. Let us show that $m \leq n$.

Let $S_{1}, S_{2}, \ldots, S_{m}$ be distinct subsets satisfying the conditions. For each S_{j} we define n dimensional vector $v^{j}=\left(a_{1}^{j}, a_{2}^{j}, \ldots, a_{n}^{j}\right)$ such that

$$
a_{i}^{j}= \begin{cases}1 & \text { if } i \in S_{j} \\ 0 & \text { if } i \notin S_{j}\end{cases}
$$

Let $\left|S_{i}\right|$ be the number of elements of S_{i}. We show that the vectors $v^{1}, v^{2}, \ldots, v^{m}$ are linearly independent and hence $m \leq n$. On the contrary, w.l.o.g. suppose that

$$
\begin{equation*}
v^{1}=\sum_{i=2}^{m} \alpha_{i} v^{i} \tag{1}
\end{equation*}
$$

Let us fix an index $j \neq 1$. The dot product of both sides of (1) and v^{j} yields

$$
\begin{equation*}
1=\sum_{i=2,3, \ldots, m ; i \neq j} \alpha_{i}+\alpha_{j}\left|S_{j}\right|=\sum_{i=2}^{m} \alpha_{i}+\alpha_{j}\left|S_{j}\right|-\alpha_{j} \tag{2}
\end{equation*}
$$

The dot product of both sides of (1) and v^{1}, yields

$$
\begin{equation*}
\left|S_{1}\right|=\sum_{i=2}^{m} \alpha_{i} \tag{3}
\end{equation*}
$$

Now (2) and (3) give $1=\alpha_{j}\left(\left|S_{j}\right|-1\right)+\left|S_{1}\right|$. If $\left|S_{j}\right|=1$, then obviously $m \leq n$. Otherwise $\alpha_{j} \leq 0$. Thus, for each $j \neq 1 \alpha_{j} \leq 0$ which contradicts (1).

