Bilkent University
Department of Mathematics

Problem Of The Month

March 2014

Problem:

Let $d(n)$ be the smallest prime divisor of integer $n \notin\{0,-1,+1\}$. Determine all polynomials $P(x)$ with integer coefficients satisfying

$$
P(n+d(n))=n+d(P(n))
$$

for all integers $n>2014$ for which $P(n) \notin\{0,-1,+1\}$.

Solution:

The answer: $P(x)=x, P(x) \equiv 1,0,-1$.
We start with the case when $\operatorname{deg}(P(x)) \geq 2$. Let us take $n=q$, where q is prime: $P(q+d(q))=q+d(P(q))$ yields $P(2 q)=q+d(P(q))$. Therefore, $|P(2 q)| \leq q+|P(q)|$ and

$$
\left|\frac{P(2 q)}{P(q)}\right| \leq \frac{q}{|P(q)|}+1
$$

Now when q increases the left hand side of (\dagger) goes to $2^{\operatorname{deg}(P(x))}$, but right hand side goes to 1. Contradiction.

Now let $\operatorname{deg}(P(x))=1$ and $P(x)=b x+c$. Then again for $n=q$ we get $2 b q+c=$ $q+d(b q+c)$ and $(2 b-1) q+c=d(b q+c)$. If q is sufficiently large we get that $b \geq 1$ and $(2 b-1) q+c \leq b q+c$ which in turn yields $b=1$. Thus, $n+d(n)+c=n+d(n+c)$ and

$$
d(n)+c=d(n+c)
$$

If $c>0$ then for $n=2^{l}-c$ the left hand side of $(\dagger \dagger)$ is at least 3 , while the right hand side of ($\dagger \dagger$) is 2 .

If $c<0$ then for $n=2^{l}$ the left hand side of $(\dagger \dagger)$ is at most 1 , while the right hand side of $(\dagger \dagger)$ is at least 2.

Thus, $c=0$ and $P(x)=x$.
If $\operatorname{deg}(P(x))=0$ then for $c \neq 0, \pm 1$ we get $c=n+d(c)$, a contradiction.

