

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

March 2014

Problem:

Let d(n) be the smallest prime divisor of integer $n \notin \{0, -1, +1\}$. Determine all polynomials P(x) with integer coefficients satisfying

$$P(n+d(n)) = n + d(P(n))$$

for all integers n > 2014 for which $P(n) \notin \{0, -1, +1\}$.

Solution:

The answer: $P(x) = x, P(x) \equiv 1, 0, -1.$

We start with the case when $deg(P(x)) \ge 2$. Let us take n = q, where q is prime: P(q + d(q)) = q + d(P(q)) yields P(2q) = q + d(P(q)). Therefore, $|P(2q)| \le q + |P(q)|$ and

$$|\frac{P(2q)}{P(q)}| \le \frac{q}{|P(q)|} + 1 \tag{(†)}$$

Now when q increases the left hand side of (\dagger) goes to $2^{deg(P(x))}$, but right hand side goes to 1. Contradiction.

Now let deg(P(x)) = 1 and P(x) = bx + c. Then again for n = q we get 2bq + c = q + d(bq + c) and (2b - 1)q + c = d(bq + c). If q is sufficiently large we get that $b \ge 1$ and $(2b - 1)q + c \le bq + c$ which in turn yields b = 1. Thus, n + d(n) + c = n + d(n + c) and

$$d(n) + c = d(n+c) \tag{(\dagger\dagger)}$$

If c > 0 then for $n = 2^{l} - c$ the left hand side of ($\dagger \dagger$) is at least 3, while the right hand side of ($\dagger \dagger$) is 2.

If c < 0 then for $n = 2^{l}$ the left hand side of ($\dagger \dagger$) is at most 1, while the right hand side of ($\dagger \dagger$) is at least 2.

Thus, c = 0 and P(x) = x.

If deg(P(x)) = 0 then for $c \neq 0, \pm 1$ we get c = n + d(c), a contradiction.