Problem Of The Month

February 2014

Problem:

Determine all triples (p, q, r) of nonnegative integers satisfying $p^{3}-q^{3}=r!-18$.

Solution:

The answer: the only solution is $(9,3,6)$.
If $r=1$ then $q^{3}-p^{3}=17$ and if $r=2$ then $q^{3}-p^{3}=16$. Since the sequence of cubes is $1,8,27,64, \ldots$ there is no solution in these cases.

If $r \geq 3$ then $3\left|\left(p^{3}-q^{3}\right) \Rightarrow 3\right|(p-q) \Rightarrow 9 \mid\left(p^{3}-q^{3}\right) \Rightarrow r \geq 6$.
If $r \geq 7$ then $7 \mid\left(p^{3}-q^{3}+18\right)$, but since $x^{3}(\bmod 7)$ is $0, \pm 1$, there is no solution in these case.
Thus, $r=6$ and $p^{3}-q^{3}=702=2 \cdot 3^{3} \cdot 13$. Since $p^{3}-q^{3}=(p-q)\left((p-q)^{2}+3 p q\right), p-q$ is divisible by 3 . Let $p-q=3 k: k\left(3 k^{2}+p q\right)=2 \cdot 3 \cdot 13 . k>2 \Rightarrow k\left(3 k^{2}+p q\right)>2 \cdot 3 \cdot 13$. Thus, $k=1,2$. If $k=1$ there is no solution since $p q=75$ and $p-q=3$. If $k=2$ then $p q=27$ and $p-q=6$ yield the only solution $(9,3,6)$.

