

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

February 2014

Problem:

Determine all triples (p, q, r) of nonnegative integers satisfying $p^3 - q^3 = r! - 18$.

Solution:

The answer: the only solution is (9, 3, 6).

If r = 1 then $q^3 - p^3 = 17$ and if r = 2 then $q^3 - p^3 = 16$. Since the sequence of cubes is 1, 8, 27, 64, ... there is no solution in these cases.

If $r \ge 3$ then $3|(p^3 - q^3) \Rightarrow 3|(p - q) \Rightarrow 9|(p^3 - q^3) \Rightarrow r \ge 6$.

If $r \ge 7$ then $7|(p^3-q^3+18)$, but since $x^3(mod7)$ is $0, \pm 1$, there is no solution in these case.

Thus, r = 6 and $p^3 - q^3 = 702 = 2 \cdot 3^3 \cdot 13$. Since $p^3 - q^3 = (p - q)((p - q)^2 + 3pq)$, p - q is divisible by 3. Let p - q = 3k: $k(3k^2 + pq) = 2 \cdot 3 \cdot 13$. $k > 2 \Rightarrow k(3k^2 + pq) > 2 \cdot 3 \cdot 13$. Thus, k = 1, 2. If k = 1 there is no solution since pq = 75 and p - q = 3. If k = 2 then pq = 27 and p - q = 6 yield the only solution (9, 3, 6).