

Bilkent University
Department of Mathematics

Problem Of The Month

November 2013

Problem:

A positive integer number n is said to be special if the sum of all its proper divisors exceeds n but n can not be represented as a sum of some proper divisors of n. Show that there are infinitely many special numbers.

Solution:

70 is a special number: its proper divisors are $1,2,5,7,10,14,35$ with sum 74 . In order to show that there are infinitely many special numbers it is sufficient to prove that for any prime number exceeding 144 the number $70 p$ is special. We will prove more general statement. Let M be a special number with proper divisors $d_{1}=1, d_{2}, \ldots, d_{r}$ and the sum of all its divisors (including M) is $\sigma(M)$. Consider any prime number exceeding $\sigma(M)$. Let us prove that the number $p M$ is also special. Indeed, the proper divisors of $p M$ are $d_{1}, d_{2}, \ldots, d_{r}, M, p d_{1}, p d_{2}, \ldots, p d_{r}$ and their sum exceeds $(p+1) M$. Now suppose that $p M$ is equal to the sum of some proper divisors of $p M: p M=\sum_{i=1}^{s} q_{i}$. Since $\sum_{i=1}^{r} d_{i}+M<p$ we get that each $q_{i}, i=1, \ldots, s$ is divisible by p and $M=\sum_{i=1}^{s} \frac{q_{i}}{p}$ which contradicts to the fact that M is special. Thus, $p M$ is special and the set of all special numbers is infinite.

