

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

October 2013

Problem:

There are N points in the space no three of which are collinear. All pairs of points are connected by $\binom{N}{2}$ line segments and each segment is colored either blue or red such that the following two conditions are held:

- there is no triangle with exactly 1 blue side
- •• there are no 13 points any two connected by the same colored segment

What is the maximal possible value of N?

Solution:

The set of points A is said to be *red connected* if any points from A are connected by red segment. Let A_1 be a maximal red connected set (if there are several we choose any one of them). Consider any point c from the complement of A_1 . Since A_1 is maximal, c is not connected to all points from A_1 by red segments, and since there is no triangle with exactly one blue side c is connected to all points of A_1 by blue segments. Similarly for each $k \ge 2$ we define sets A_k which are maximal red connected set from the complement of $\bigcup_{i=1}^{k-1} A_i$ until $|\bigcup_{i=1}^k A_i| = N$. As it was shown above, any point c from the complement of A_i is connected to all points of A_i by blue segments. Thus, any two points from A_i and A_j , $i \ne j$ are connected by blue segments. Since no 13 points are connected by the same colored segments $|A_i| \le 12$ and $k \le 12$. Therefore, $N \le 12 \cdot 12 = 144$. The bound N = 144 is achieved in the straightforward example when $|A_i| = 12$ for each $k = 1, 2, \ldots, 12$. Done.