

Bilkent University
Department of Mathematics

Problem Of The Month

October 2013

Problem:

There are N points in the space no three of which are collinear. All pairs of points are connected by $\binom{N}{2}$ line segments and each segment is colored either blue or red such that the following two conditions are held:

- there is no triangle with exactly 1 blue side
-๑ there are no 13 points any two connected by the same colored segment
What is the maximal possible value of N ?

Solution:

The set of points A is said to be red connected if any points from A are connected by red segment. Let A_{1} be a maximal red connected set (if there are several we choose any one of them). Consider any point c from the complement of A_{1}. Since A_{1} is maximal, c is not connected to all points from A_{1} by red segments, and since there is no triangle with exactly one blue side c is connected to all points of A_{1} by blue segments. Similarly for each $k \geq 2$ we define sets A_{k} which are maximal red connected set from the complement of $\cup_{i=1}^{k-1} A_{i}$ until $\left|\cup_{i=1}^{k} A_{i}\right|=N$. As it was shown above, any point c from the complement of A_{i} is connected to all points of A_{i} by blue segments. Thus, any two points from A_{i} and $A_{j}, i \neq j$ are connected by blue segments. Since no 13 points are connected by the same colored segments $\left|A_{i}\right| \leq 12$ and $k \leq 12$. Therefore, $N \leq 12 \cdot 12=144$. The bound $N=144$ is achieved in the straightforward example when $\left|A_{i}\right|=12$ for each $k=1,2, \ldots, 12$. Done.

