

Bilkent University
Department of Mathematics

Problem Of The Month

July-August 2013

Problem:

Find all prime triples (p, q, r) such that $3 \not \backslash p+q+r$ and both $p+q+r, p q+q r+r p+3$ are perfect squares. Is there any prime triple (p, q, r) such that $3 \mid p+q+r$ and both $p+q+r$, $p q+q r+r p+3$ are perfect squares?

Solution:

Let us show that one of the primes p, q, r is 2 . If all primes p, q, r are odds all possibilities up to permutations are: $(p, q, r) \equiv(1,1,1),(1,1,3),(1,3,3),(3,3,3)(\bmod 4)$. We get a contradiction in the cases $(1,1,1),(1,3,3)$ since $x^{2}=p+q+r \equiv 3(\bmod 4)$ and in the cases $(1,1,3),(3,3,3)$ since $y^{2}-3=p q+q r+r p \equiv 3(\bmod 4)$. Therefore, at least one of p, q, r is equal to 2. W.l.o.g. $p=2$ and $q \leq r$. Then

$$
q+r=x^{2}-2, \quad q r=y^{2}-2 x^{2}+1
$$

Now if $3 \mid y$ then $(q+2)(r+2)=y^{2}+1 \equiv 1(\bmod 3)$. Thus, either $q \equiv r \equiv 2(\bmod 3)$ or $q \equiv r \equiv 0(\bmod 3)$. But for $q \equiv r \equiv 0(\bmod 3)$ we get a contradiction: $x^{2}-2 \equiv 0$ $(\bmod 3)$. For $q \equiv r \equiv 2(\bmod 3)$ we get $x^{2}-2 \equiv 1(\bmod 3)$ and $3 \mid x$, but by assumption $33 \wedge x$. Thus, $3 \mid y$ is not possible. Now since $33 \wedge x$ we get $x^{2} \equiv y^{2} \equiv 1(\bmod 3)$ and consequently $q r=y^{2}-2 x^{2}+1 \equiv 0(\bmod 3)$. Thus, $q=3$. Now $r=x^{2}-5$ and $3 r=y^{2}-2 x^{2}+1$. Therefore $5 r=y^{2}-9=(y-3)(y+3)$. For $r=2,3,5 x$ is not an integer number. Therefore, $r>5$. Since $y-3=1$ yields no solution $y-3=5, r=y+3$ and $r=11$. For $x=4, y=8$ we get $(p, q, r)=(2,3,11)$. Therefore, all solutions up to permutations are: $(p, q, r)=(2,3,11)$.
$(p, q, r)=(2,11,23)$ satisfies the conditions.

