Problem Of The Month

June 2013

Problem:

Determine all positive integers n for which $\frac{n!-1}{2 n+7}$ is also an integer number.

Solution: The answer: $n=1,5,8$.
It can be readily checked out that among first 6 integers 1 and 5 are only integers for which $\frac{n!-1}{2 n+7}$ is also integer.
Let $n \geq 7$ be an integer for which $\frac{n!-1}{2 n+7}$ is also an integer. Then if $2 n+7$ is not prime then it has a prime divisor $p_{1} \leq n$. Contradiction, since p_{1} also divides $n!$. Thus, $2 n+7=p$ is a prime number. We get

$$
\left(\frac{p-7}{2}\right)!\equiv 1(\bmod p)
$$

Now by Wilson theorem $(p-1)!\equiv-1(\bmod p)$ and also
$(p-1)!\equiv(-1)^{\frac{p-7}{2}} \cdot\left(\left(\frac{p-7}{2}\right)!\right)^{2} \cdot \frac{p-5}{2} \cdot \frac{p-3}{2} \cdot \frac{p-1}{2} \cdot \frac{p+1}{2} \cdot \frac{p+3}{2} \cdot \frac{p+1}{2} \equiv(-1)^{\frac{p-1}{2}} \frac{225}{64}(\bmod p)$
Therefore, $225 \equiv(-1)^{\frac{p+1}{2}} 64(\bmod p)$. If $p=4 l+1$ then $p \mid 225+64=17^{2}$ but $p \geq 21$, no solution. If $p=4 l+3$ then $p \mid 225-64=7 \cdot 23$. Since $p \geq 21$ we get $p=23$ and $n=8$ which satisfies the condition. Done.

