Problem Of The Month

May 2013

Problem:

Suppose that for all nonnegative a, b, c satisfying $a+b+c=1$ the inequality

$$
\frac{a^{2}+b^{2}+c^{2}+\frac{3}{4} a b c}{a b+b c+c a} \geq T
$$

is held. What is the maximal possible value of T ?

Solution:

The answer: $T=\frac{13}{12}$. First of all, let us show that

$$
\frac{a^{2}+b^{2}+c^{2}+\frac{3}{4} a b c}{a b+b c+c a} \geq \frac{13}{12}
$$

Since $a+b+c=1$ the inequality is equivalent to

$$
\frac{\left(a^{2}+b^{2}+c^{2}\right)(a+b+c)+\frac{3}{4} a b c}{(a b+b c+c a)(a+b+c)} \geq \frac{13}{12}
$$

After removing the brackets we get

$$
12 a^{3}+12 b^{3}+12 c^{3} \geq a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}+30 a b c
$$

We can prove the last inequality by adding the following seven AG mean inequalities:

$$
\begin{aligned}
& 10 a^{3}+10 b^{3}+10 c^{3} \geq 30 \sqrt[3]{a^{3} b^{3} c^{3}}=30 a b c \\
& \frac{1}{3} a^{3}+\frac{1}{3} a^{3}+\frac{1}{3} b^{3} \geq \sqrt[3]{a^{3} a^{3} b^{3}}=a^{2} b \\
& \frac{1}{3} a^{3}+\frac{1}{3} a^{3}+\frac{1}{3} c^{3} \geq \sqrt[3]{a^{3} a^{3} c^{3}}=a^{2} c \\
& \frac{1}{3} b^{3}+\frac{1}{3} b^{3}+\frac{1}{3} a^{3} \geq \sqrt[3]{b^{3} b^{3} a^{3}}=a b^{2} \\
& \frac{1}{3} b^{3}+\frac{1}{3} b^{3}+\frac{1}{3} c^{3} \geq \sqrt[3]{b^{3} b^{3} c^{3}}=b^{2} c \\
& \frac{1}{3} c^{3}+\frac{1}{3} c^{3}+\frac{1}{3} a^{3} \geq \sqrt[3]{c^{3} c^{3} a^{3}}=a c^{2} \\
& \frac{1}{3} c^{3}+\frac{1}{3} c^{3}+\frac{1}{3} b^{3} \geq \sqrt[3]{c^{3} c^{3} b^{3}}=b c^{2}
\end{aligned}
$$

Finally note that at $a=b=c=\frac{1}{3}$ the left side of the inequality is equal to $\frac{13}{12}$. Done.

