Bilkent University Department of Mathematics

April 2013

Problem:

Some unit squares of the grid 99×99 are marked so that any sub-square 5×5 of the grid consisting of unit squares has at least 6 marked unit squares. What is the minimal possible number of marked unit squares?

Solution: The answer is 2261 .

Suppose that the centers of unit squares have coordinates (i, j), where $i=1,2, \ldots, 99 ; j=$ $1,2, \ldots, 99$. The unit square with center at (i, j) will be denoted by $u(i, j)$. Let the marked unit squares are:
$u(5 k, 5 l+1)$, where $1 \leq k \leq 19,0 \leq l \leq 19$ and
$u(m, 5 n)$, where $1 \leq m \leq 99,1 \leq n \leq 19$.
Then it can be readily seen that the total number of marked unit squares is 2261 , and any sub-square 5×5 has exactly 6 marked unit squares.

Let k be a positive integer. Now by the method of mathematical induction we'll show that if any 5×5 sub-square of the grid $(5 k+4) \times(5 k+4)$ has at least 6 marked unit squares, then the total number of marked unit squares is at least $6 k^{2}+5 k$.

- $k=1$. $6 \cdot 1^{2}+5 \cdot 1=11$. Consider two 5×5 squares: the square consisting all $u(k, l)$, where $1 \leq k \leq 5,1 \leq l \leq 5$ and the square consisting all $u(k, l)$, where $5 \leq k \leq 9,5 \leq l \leq 9$. Each of these 5×5 squares contains at least 6 marked unit squares and their intersection
is the unit square $u(5,5)$. Therefore the total number of marked unit squares is at least 11. Done.
- Suppose the statement is correct for a $(5 k+4) \times(5 k+4) \operatorname{grid} A$ and consider a $(5 k+9) \times(5 k+9)$ grid B. Suppose that A consists of all unit squares $u(i, j)$, where $1 \leq i \leq 5 k+4,1 \leq j \leq 5 k+4$ and B consisting of all unit squares $u(i, j)$, where $1 \leq i \leq 5 k+9,1 \leq j \leq 5 k+9$.

Let 5×5 squares $U_{s}, s=1,2, \ldots, k+1$; consist of all unit squares $u(i, j)$, where $5 k+5 \leq i \leq 5 k+9,5 s-4 \leq j \leq 5 s$ and 5×5 squares $V_{t}, t=1,2 \ldots, k+1$; consist of all unit squares $u(i, j)$, where $5 t-4 \leq i \leq 5 t, 5 k+5 \leq j \leq 5 k+9$. Note that the squares U_{k+1} and V_{k+1} share a unit square $u(5 k+5,5 k+5)$, all other pairs of U_{s} and V_{t} squares do not share any unit square. Therefore, since the union of $k+1$ U_{s} and $k+1 V_{t}$ squares is a subset of the set $B-A$, the set $B-A$ contains at least $6 \cdot 2(k+1)-1=12 k+11$ marked squares. Thus, by inductive hypothesis B contains at least $6 k^{2}+5 k+12 k+11=6(k+1)^{2}+5(k+1)$. Done.

At $k=19$ we get that the grid 99×99 contains at least 2261 marked unit squares. The solution is completed.

