

Bilkent University
Department of Mathematics

Problem Of The Month

March 2013

Problem:

Find all nonnegative integers a and b such that both $\frac{a b^{2}-b}{a^{2}+b^{2}}$ and $\frac{b a^{2}-a}{a^{2}+b^{2}}$ are integers.

Solution:

If $a=0$ then the only possibility is $b=1$ and if $b=0$ the only possibility is $a=1$. Now suppose that $a, b>0$ and the integer factorizations of a and b contain factors p^{s} and p^{t} respectively, and without loss of generality suppose that $s \leq t$. Then $p^{2 s}$ divides $b a^{2}$ and $a^{2}+b^{2}$ but does not divide a which contradicts the fact that $\frac{b a^{2}-a}{a^{2}+b^{2}}$ is integer. Therefore, a and b are relatively prime numbers and readily b and $a^{2}+b^{2}$ are also relatively prime numbers. Now since $\frac{a b^{2}-b}{a^{2}+b^{2}}=\frac{b(a b-1)}{a^{2}+b^{2}}$ is an integer number $a^{2}+b^{2}$ divides $a b-1$. Since $a b-1<a b \leq 2 a b \leq a^{2}+b^{2}$ we conclude that $a b=1$. Thus, $(a, b)=(0,1),(1,0),(1,1)$.

