

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

March 2013

Problem:

Find all nonnegative integers a and b such that both $\frac{ab^2 - b}{a^2 + b^2}$ and $\frac{ba^2 - a}{a^2 + b^2}$ are integers.

Solution:

If a = 0 then the only possibility is b = 1 and if b = 0 the only possibility is a = 1. Now suppose that a, b > 0 and the integer factorizations of a and b contain factors p^s and p^t respectively, and without loss of generality suppose that $s \le t$. Then p^{2s} divides ba^2 and $a^2 + b^2$ but does not divide a which contradicts the fact that $\frac{ba^2 - a}{a^2 + b^2}$ is integer. Therefore, a and b are relatively prime numbers and readily b and $a^2 + b^2$ are also relatively prime numbers. Now since $\frac{ab^2 - b}{a^2 + b^2} = \frac{b(ab - 1)}{a^2 + b^2}$ is an integer number $a^2 + b^2$ divides ab - 1. Since $ab - 1 < ab \le 2ab \le a^2 + b^2$ we conclude that ab = 1. Thus, (a, b) = (0, 1), (1, 0), (1, 1).