Bilkent University Department of Mathematics

Problem Of The Month

January 2013

Problem:

Find the minimum value of the expression

$$
\frac{a}{b^{3}+54}+\frac{b}{c^{3}+54}+\frac{c}{a^{3}+54}
$$

over all nonnegative real numbers a, b, c satisfying $a+b+c=\frac{9}{2}$.

Solution:

The answer: $f(a, b, c)=\frac{a}{b^{3}+54}+\frac{b}{c^{3}+54}+\frac{c}{a^{3}+54}$ takes its minimum value $\frac{2}{27}$ at points $(a, b, c)=\left(0, \frac{3}{2}, 3\right),\left(3,0, \frac{3}{2}\right),\left(\frac{3}{2}, 3,0\right)$.

Since $a+b+c=\frac{9}{2}$, in order to prove $f(a, b, c) \geq \frac{2}{27}$ we show that

$$
\left(\frac{a}{b^{3}+54}-\frac{a}{54}\right)+\left(\frac{b}{c^{3}+54}-\frac{b}{54}\right)+\left(\frac{c}{a^{3}+54}-\frac{c}{54}\right) \geq \frac{2}{27}-\frac{9}{2 \cdot 54}
$$

or

$$
\frac{a b^{3}}{b^{3}+54}+\frac{b c^{3}}{c^{3}+54}+\frac{c a^{3}}{a^{3}+54} \leq \frac{1}{2}
$$

Note that since $\frac{b^{3}+27+27}{3} \geq \sqrt[3]{b^{3} \cdot 27 \cdot 27}=9 b$ we get $\frac{b}{b^{3}+54} \leq \frac{1}{27}$. Similarly,
$\frac{c}{c^{3}+54} \leq \frac{1}{27}$ and $\frac{a}{a^{3}+54} \leq \frac{1}{27}$. Therefore, in order to prove $f(a, b, c) \geq \frac{2}{27}$ it is enough to establish the inequality $a b^{2}+b c^{2}+c a^{2} \leq \frac{27}{2}$.

Now let et (x, y, z) be a permutation of (a, b, c) such that $x \geq y \geq z$. Then by rearrangement inequality
$a b^{2}+b c^{2}+c a^{2} \leq b \cdot a b+c \cdot b c+a \cdot c a \leq x \cdot x y+y \cdot z x+z \cdot y z=y(x+z)^{2}-x y z \leq y(x+z)^{2}$
Finally by AM-GM inequality,

$$
y(x+z)^{2}=\frac{1}{2} \cdot 2 y(x+z)(x+z) \leq \frac{1}{2} \cdot\left(\frac{2 y+x+z+x+z}{3}\right)^{3}=\frac{27}{2}
$$

where equality is held at $(a, b, c)=\left(0, \frac{3}{2}, 3\right),\left(3,0, \frac{3}{2}\right),\left(\frac{3}{2}, 3,0\right)$ since for equality $2 y=x+z$ and $x y z=0$. Note that in Done.

Remark. In the proof of (\dagger) we have used inequalities $\frac{b}{b^{3}+54} \leq \frac{1}{27}, \frac{c}{c^{3}+54} \leq \frac{1}{27}$ and $\frac{a}{a^{3}+54} \leq \frac{1}{27}$ with equalities only at $b=3, c=3$ and $a=3$ respectively. Fortunately at $(a, b, c)=\left(0, \frac{3}{2}, 3\right),\left(3,0, \frac{3}{2}\right),\left(\frac{3}{2}, 3,0\right)$ two term in (\dagger) vanish and the equality still holds.

