

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

November 2012

Problem:

Let *m* and *n*, m < n, be relatively prime positive integers. Assume that there exist two infinite sequences $\{a_i\}$ and $\{b_i\}$ with periods *m* and *n* respectively such that $a_i = b_i$ for i = 1, 2, ..., 2012. What is the minimal possible value of *n*?

(A sequence $\{a_i\}$ is said to be a periodic sequence with period p if $a_{i+p} = a_i$ for all i and p is the smallest positive integer satisfying this condition).

Solution:

The answer is n = 1008.

Let

 $\{a_i\}$ be a sequence with period m = 1007 satisfying $a_i = 1$ for all i = 1, 2, ..., 1005, $a_{1006} = 2, a_{1007} = 2$ and

 $\{b_i\}$ be a sequence with period n = 1008 satisfying $b_i = 1$ for all i = 1, 2, ..., 1005, $b_{1006} = 2, b_{1007} = 2, b_{1008} = 1$.

It can be readily verified that first 2012 terms of these sequences coincide: $a_i = b_i$ for all i = 1, 2, ..., 2012.

Now we show that if m and n are relatively prime and $\{a_i\}$ and $\{b_i\}$ are sequences with periods m and n, then at most first m + n - 2 consecutive terms of these sequences may

coincide. On the contrary, suppose that $n = m \cdot k + r$ and first m + n - 1 terms of these sequences coincide. Terms with indices $i \in \{n+1, n+2, \ldots, n+m-1\}$ of both sequences coincide. Therefore:

 $i = n + 1 : a_{n+1} = b_{n+1} = b_1 = a_1 \text{ and } b_{n+1} = a_{n+1} = a_{r+1} \text{ implies } a_1 = a_{r+1}.$ $i = n + 2 : a_{n+2} = b_{n+2} = b_2 = a_2 \text{ and } b_{n+2} = a_{n+2} = a_{r+2}. \text{ implies } a_2 = a_{r+2}.$ \vdots $i = n + m - 1 : a_{n+m-1} = b_{n+m-1} = b_{m-1} = a_{m-1} \text{ and } b_{n+m-1} = a_{n+m-1} = a_{r-1} \text{ implies } a_{m-1} = a_{r-1}.$

Thus, we have cyclic equalities $a_1 = a_{r+1}$, $a_2 = a_{r+2}$, ..., $a_{m-1} = a_{r-1}$. Since r and m are relatively prime, we readily get that $a_1 = a_2 = \cdots = a_m$ which contradicts the fact that the sequence $\{a_i\}$ has a period m. Contradiction completes the proof.

Now $m + n - 2 \ge 2012$ and n > m implies that $n \ge 1008$. Done.