Bilkent University Department of Mathematics

November 2012

Problem:

Let m and $n, m<n$, be relatively prime positive integers. Assume that there exist two infinite sequences $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ with periods m and n respectively such that $a_{i}=b_{i}$ for $i=1,2, \ldots, 2012$. What is the minimal possible value of n ?
(A sequence $\left\{a_{i}\right\}$ is said to be a periodic sequence with period p if $a_{i+p}=a_{i}$ for all i and p is the smallest positive integer satisfying this condition).

Solution:

The answer is $n=1008$.

Let
$\left\{a_{i}\right\}$ be a sequence with period $m=1007$ satisfying $a_{i}=1$ for all $i=1,2, \ldots, 1005$, $a_{1006}=2, a_{1007}=2$ and
$\left\{b_{i}\right\}$ be a sequence with period $n=1008$ satisfying $b_{i}=1$ for all $i=1,2, \ldots, 1005$, $b_{1006}=2, b_{1007}=2, b_{1008}=1$.

It can be readily verified that first 2012 terms of these sequences coincide: $a_{i}=b_{i}$ for all $i=1,2, \ldots, 2012$.

Now we show that if m and n are relatively prime and $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are sequences with periods m and n, then at most first $m+n-2$ consecutive terms of these sequences may
coincide. On the contrary, suppose that $n=m \cdot k+r$ and first $m+n-1$ terms of these sequences coincide. Terms with indices $i \in\{n+1, n+2, \ldots, n+m-1\}$ of both sequences coincide. Therefore:
$i=n+1: a_{n+1}=b_{n+1}=b_{1}=a_{1}$ and $b_{n+1}=a_{n+1}=a_{r+1}$ implies $a_{1}=a_{r+1}$.
$i=n+2: a_{n+2}=b_{n+2}=b_{2}=a_{2}$ and $b_{n+2}=a_{n+2}=a_{r+2}$. implies $a_{2}=a_{r+2}$.
$i=n+m-1: a_{n+m-1}=b_{n+m-1}=b_{m-1}=a_{m-1}$ and $b_{n+m-1}=a_{n+m-1}=a_{r-1}$ implies $a_{m-1}=a_{r-1}$.

Thus, we have cyclic equalities $a_{1}=a_{r+1}, a_{2}=a_{r+2}, \ldots, a_{m-1}=a_{r-1}$. Since r and m are relatively prime, we readily get that $a_{1}=a_{2}=\cdots=a_{m}$ which contradicts the fact that the sequence $\left\{a_{i}\right\}$ has a period m. Contradiction completes the proof.

Now $m+n-2 \geq 2012$ and $n>m$ implies that $n \geq 1008$. Done.

