

## Bilkent University Department of Mathematics

## PROBLEM OF THE MONTH

September 2012

## **Problem:**

Find the maximal possible value of the real number T such that for all positive real numbers a, b, c satisfying abc = 1 we have

$$\frac{a+b}{ab+a+b} + \frac{b+c}{bc+b+c} + \frac{c+a}{ca+c+a} \ge T$$

## Solution:

Let us show that

$$\frac{a+b}{ab+a+b} + \frac{b+c}{bc+b+c} + \frac{c+a}{ca+c+a} \ge 2 \qquad \dagger$$

The substitution  $a = x^3, b = y^3, c = z^3$  yields:

$$\frac{x^3+y^3}{x^3y^3+x^3+y^3}+\frac{y^3+z^3}{y^3z^3+y^3+z^3}+\frac{z^3+x^3}{z^3x^3+z^3+x^3}\geq 2$$

Let us prove that

$$\frac{x^3 + y^3}{x^3y^3 + x^3 + y^3} \ge \frac{xz + yz}{xy + yz + xz}$$
 ‡

Since x, y, z are positive, the inequality  $(\ddagger)$  is equivalent to  $(x^3 + y^3)(xy + yz + xz) \ge (xz + yz)(x^3y^3 + x^3 + y^3)$  or  $x^3 + y^3 \ge x^3y^2z + x^2y^3z$ . The last inequality holds since  $x^3 + y^3 = (x + y)(x^2 - xy + y^2)$  and  $x^3y^2z + x^2y^3z = x^2y + xy^2 = (x + y)xy$ . The inequality ( $\ddagger$ ) is proved. The similar inequalities can be obtained for y, z and z, x. The sum of these three inequalities yields ( $\ddagger$ ). T = 2 is achieved at a = b = c = 1. Done.