Bilkent University Department of Mathematics

Problem Of The Month

September 2012

Problem:

Find the maximal possible value of the real number T such that for all positive real numbers a, b, c satisfying $a b c=1$ we have

$$
\frac{a+b}{a b+a+b}+\frac{b+c}{b c+b+c}+\frac{c+a}{c a+c+a} \geq T
$$

Solution:

Let us show that

$$
\frac{a+b}{a b+a+b}+\frac{b+c}{b c+b+c}+\frac{c+a}{c a+c+a} \geq 2
$$

The substitution $a=x^{3}, b=y^{3}, c=z^{3}$ yields:

$$
\frac{x^{3}+y^{3}}{x^{3} y^{3}+x^{3}+y^{3}}+\frac{y^{3}+z^{3}}{y^{3} z^{3}+y^{3}+z^{3}}+\frac{z^{3}+x^{3}}{z^{3} x^{3}+z^{3}+x^{3}} \geq 2
$$

Let us prove that

$$
\frac{x^{3}+y^{3}}{x^{3} y^{3}+x^{3}+y^{3}} \geq \frac{x z+y z}{x y+y z+x z}
$$

Since x, y, z are positive, the inequality (\ddagger) is equivalent to $\left(x^{3}+y^{3}\right)(x y+y z+x z) \geq$ $(x z+y z)\left(x^{3} y^{3}+x^{3}+y^{3}\right)$ or $x^{3}+y^{3} \geq x^{3} y^{2} z+x^{2} y^{3} z$. The last inequality holds since $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$ and $x^{3} y^{2} z+x^{2} y^{3} z=x^{2} y+x y^{2}=(x+y) x y$. The inequality (\ddagger) is proved. The similar inequalities can be obtained for y, z and z, x. The sum of these three inequalities yields $(\dagger) . T=2$ is achieved at $a=b=c=1$. Done.

