

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

July-August 2012

Problem:

Let A_1, A_2, \ldots, A_k are distinct subsets of the set $\{1, 2, \ldots, 2012\}$ such that

 $|A_i| = 3$ for each $1 \le i \le k$ and $|A_i \cap A_j| \ne 1$ for each $1 \le i < j \le k$.

Find the maximal possible value of k.

(|A|denotes the number of elements of A).

Solution:

The answer is: k = 2012.

Let us prove that if A_1, A_2, \ldots, A_k are distinct subsets of the set $\{1, 2, \ldots, n\}$ satisfying conditions then $k \leq n$. Note that if $A_i \cap A_l \neq \emptyset$ and $A_j \cap A_l \neq \emptyset$ then $A_i \cap A_j \neq \emptyset$. Thus, the collection A_1, A_2, \ldots, A_k can be partitioned into groups such that any two sets A_i and A_j from the same group have nonempty intersection. Let **G** be one of these groups. The number of elements from $\{1, 2, \ldots, n\}$ belonging to the union of all sets from **G** will be denoted by $f(\mathbf{G})$. Let $A_l = \{a, b, c\} \in \mathbf{G}$. Consider three pairs: (a, b), (b, c), (a, c).

Case 1. There are sets from **G** containing at least two of these three pairs, say $A_r = \{a, b, d\}$ and $A_s = \{a, c, e\}$. Since $A_r \cap A_s$ is not empty, d = e. Then **G** can contain at most one more set $A_t = \{b, c, d\}$. Thus, **G** contains at most 4 sets and $f(\mathbf{G}) = 4$.

Case 2. Any set from **G** contains one fixed pair, say (a, b). Then the difference between $f(\mathbf{G})$ and the number of sets in **G** is 2.

The proof is completed and as a consequence we get that $k \leq 2012$.

Example for k = 2012: Let us partition $\{1, 2, ..., 2012\}$ into 503 subsets each consisting four elements and for each subset $\{a, b, c, d\}$ determine for sets: $\{a, b, c\}, \{a, b, d\}, \{a, c, d\}$ and $\{b, c, d\}$ satisfying conditions. Done.