Bilkent University Department of Mathematics

Problem Of The Month

July-August 2012

Problem:

Let $A_{1}, A_{2}, \ldots, A_{k}$ are distinct subsets of the set $\{1,2, \ldots, 2012\}$ such that
$\left|A_{i}\right|=3$ for each $1 \leq i \leq k$ and $\left|A_{i} \cap A_{j}\right| \neq 1$ for each $1 \leq i<j \leq k$.
Find the maximal possible value of k.
$(|A|$ denotes the number of elements of $A)$.

Solution:

The answer is: $k=2012$.
Let us prove that if $A_{1}, A_{2}, \ldots, A_{k}$ are distinct subsets of the set $\{1,2, \ldots, n\}$ satisfying conditions then $k \leq n$. Note that if $A_{i} \cap A_{l} \neq \emptyset$ and $A_{j} \cap A_{l} \neq \emptyset$ then $A_{i} \cap A_{j} \neq \emptyset$. Thus, the collection $A_{1}, A_{2}, \ldots, A_{k}$ can be partitioned into groups such that any two sets A_{i} and A_{j} from the same group have nonempty intersection. Let \mathbf{G} be one of these groups. The number of elements from $\{1,2, \ldots, n\}$ belonging to the union of all sets from \mathbf{G} will be denoted by $f(\mathbf{G})$. Let $A_{l}=\{a, b, c\} \in \mathbf{G}$. Consider three pairs: $(a, b),(b, c),(a, c)$.

Case 1. There are sets from \mathbf{G} containing at least two of these three pairs, say $A_{r}=$ $\{a, b, d\}$ and $A_{s}=\{a, c, e\}$. Since $A_{r} \cap A_{s}$ is not empty, $d=e$. Then \mathbf{G} can contain at most one more set $A_{t}=\{b, c, d\}$. Thus, \mathbf{G} contains at most 4 sets and $f(\mathbf{G})=4$.

Case 2. Any set from \mathbf{G} contains one fixed pair, say (a, b). Then the difference between $f(\mathbf{G})$ and the number of sets in \mathbf{G} is 2 .

The proof is completed and as a consequence we get that $k \leq 2012$.
Example for $k=2012$: Let us partition $\{1,2, \ldots, 2012\}$ into 503 subsets each consisting four elements and for each subset $\{a, b, c, d\}$ determine for sets: $\{a, b, c\},\{a, b, d\},\{a, c, d\}$ and $\{b, c, d\}$ satisfying conditions. Done.

