

Bilkent University
 Department of Mathematics

Problem Of The Month

June 2012

Problem:

In how many ways the set $\{1,2, \ldots, 2012\}$ can be partitioned into two subsets so that for any two distinct elements a and b belonging to the same subset $a+b \neq 3^{k}, k=1,2, \ldots$.

Solution:

Let us distribute the numbers $1,2, \ldots, 2012$ ascending order. 1 and 2 should be placed into different sets. It can be readily observed that for $k=1,2, \ldots, 6$
if a number p belongs to the interval $\left[3^{k}, \frac{3^{k+1}}{2}\right)$ then it can be placed in any of the two sets and
if a number p belongs to the interval $\left(\frac{3^{k+1}}{2}, 3^{k+1}-1\right]$ then it should be placed into the set not containing $3^{k+1}-p$.

Therefore, the numbers p which can be placed in any of the two sets are integers belonging to the intervals $[3,4],[9,13],[27,40],[81,121],[243,364],[729,1093]$. Thus, the total number of cases when there are 2 possibilities is $2+5+14+41+122+365=549$ and the answer is 2^{549}.

