

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

May 2012

Problem:

Let S be the set of all subsets of the set $\{1, 2, ..., 2012\}$. Find the total number of functions $f: S \to \{0, 1\}$ satisfying

$$f(U \cap V) = min(f(U), f(V))$$

for all $U, V \in S$.

Solution:

The identically zero function obviously satisfies the conditions.

Let a not identically zero function f satisfies the conditions. Define $A_f = \bigcap_{f(U)=1} U$. By definition, if f(U) = 1 then $A_f \subset U$. If $A_f \subset U$ then again by definition f(U) = 1. Therefore, f(U) = 1 iff $A_f \subset U$. Therefore, the number of nonzero functions is at most 2^{2012} .

Let us define a function f_B for each fixed $B \in S$:

$$f_B(U) = \begin{cases} 1 & if \ B \subset U \\ 0 & if \ B \not \subset U \end{cases}$$

It can be readily shown that f_B satisfies the conditions. Therefore, the number of nonzero functions is at least 2^{2012} . Thus, the answer is $2^{2012} + 1$.