

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

March 2012

Problem:

We say that a rational number $r \in (0,1)$ is *n*-good if the decimal expansion of r is: $r = 0.r_1r_2...,r_n$ and $r_i \neq 9$ for all i = 1, 2, ..., n. Let G_n be the set off all *n*-good numbers. Find the limit

$$\lim_{n \to \infty} \frac{|G_n|}{S_n}$$

where $|G_n|$ is the number of elements in G_n and S_n is the sum of all elements of G_n .

Solution:

The answer is $\frac{9}{4}$.

Clearly $|G_n| = 9^n$ and $S_n = \sum_{k=1}^n \frac{r_k}{10^k}$, where the first summation is taken over all possible combinations of (r_1, \ldots, r_n) with restriction $r_i \neq 9$. Readily

$$S_n = 9^{n-1} \cdot (0 + 1 + \dots + 8) \cdot (\frac{1}{10} + \frac{1}{100} + \dots + \frac{1}{10^n}) = 9^{n-1} \cdot 4 \cdot (1 - \frac{1}{10^n}).$$

Therefore,

$$\lim_{n \to \infty} \frac{|G_n|}{S_n} = \frac{9}{4}.$$