Problem Of The Month

March 2012

Problem:

We say that a rational number $r \in(0,1)$ is n-good if the decimal expansion of r is: $r=0 . r_{1} r_{2} \ldots, r_{n}$ and $r_{i} \neq 9$ for all $i=1,2, \ldots, n$. Let G_{n} be the set off all n-good numbers. Find the limit

$$
\lim _{n \rightarrow \infty} \frac{\left|G_{n}\right|}{S_{n}}
$$

where $\left|G_{n}\right|$ is the number of elements in G_{n} and S_{n} is the sum of all elements of G_{n}.

Solution:

The answer is $\frac{9}{4}$.
Clearly $\left|G_{n}\right|=9^{n}$ and $S_{n}=\sum \sum_{k=1}^{n} \frac{r_{k}}{10^{k}}$, where the first summation is taken over all possible combinations of $\left(r_{1}, \ldots, r_{n}\right)$ with restriction $r_{i} \neq 9$. Readily

$$
S_{n}=9^{n-1} \cdot(0+1+\cdots+8) \cdot\left(\frac{1}{10}+\frac{1}{100}+\cdots+\frac{1}{10^{n}}\right)=9^{n-1} \cdot 4 \cdot\left(1-\frac{1}{10^{n}}\right)
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \frac{\left|G_{n}\right|}{S_{n}}=\frac{9}{4}
$$

