Bilkent University Department of Mathematics

Problem Of The Month

February 2012

Problem:

Let $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set of positive real numbers such that for each $l \in\{2,3,4,5\}$ there are pairwise disjoint subsets $S_{1}^{l}, S_{2}^{l}, \ldots, S_{l}^{l}$ of S satisfying $\left|S_{i}^{l}\right|=\frac{|S|}{l} ; i=1,2, \ldots, l$ ($|A|$ denotes the sum of all elements of the set A). Find the minimal possible value of n.

Solution:

Let us show that $n \geq 9$. Let $\sum_{i=1}^{n} a_{i}=A$. Suppose that $n \leq 8$. If we take $l=5$ then $\left|S_{i}^{5}\right|=\frac{A}{5}$ and consequently each $a_{i} \leq \frac{A}{5}$. At least two of the subsets $S_{i}^{5}, i=1, \ldots, 5$ contain one element, so for some s, t we have $a_{s}=a_{t}=\frac{A}{5}$. Contradiction and $n \geq 9$. $S=\{1,2,4,5,7,8,10,11,12\}$ satisfies conditions:
$l=2:\{4,5,10,11\},\{1,2,7,8,12\}$.
$l=3:\{1,7,12\},\{4,5,11\},\{2,8,10\}$.
$l=4:\{4,11\},\{5,10\},\{7,8\},\{1,2,12\}$.
$l=5:\{1,11\},\{2,10\},\{4,8\},\{5,7\},\{12\}$.
Thus, the minimal $n=9$.
Remark. We can prove $n \geq 9$ also in the case when S is a multiset (some elements of S may coincide) by slightly more detailed analysis. Again suppose that $n \leq 8$. If $l=4$, then $\left|S_{1}^{4}\right|=\left|S_{2}^{4}\right|=\left|S_{l}^{3}\right|=\left|S_{l}^{4}\right|=\frac{A}{4}$ and therefore each S_{i}^{4} contains at least two elements
and $n=8$. Thus, each S_{i}^{4} contains exactly two elements. Let us show that at least six elements of S are of the the form $\frac{A \cdot k}{5}$ where k is a nonnegative integer.
If there are only two elements of S equal to $\frac{A}{5}$, then there are also at least two elements $\frac{A}{20}$ for getting $\frac{A}{4}$. In order to get $\frac{A}{5}$ in the case $l=5$ we need at least two elements of the form $\frac{3 A}{20}$ to add to elements $\frac{A}{20}$ and in total we have six elements of the form $\frac{A \cdot k}{20}$. If there are at least three elements of S equal to $\frac{A}{5}$, then there are also at least three elements $\frac{A}{20}$ for getting $\frac{A}{4}$ and in total we have six elements of the form $\frac{A \cdot k}{20}$.
Thus, there are at least six elements of S of the form $\frac{A \cdot k}{20}$ and if we take $l=3$, at least one of the subsets S_{i}^{3} consists of only elements $\frac{A \cdot k}{20}$. Contradiction since $\left|S_{i}^{3}\right|=\frac{A}{3}$.

