

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

February 2012

Problem:

Let $S = \{a_1, a_2, \ldots, a_n\}$ be a set of positive real numbers such that for each $l \in \{2, 3, 4, 5\}$ there are pairwise disjoint subsets $S_1^l, S_2^l, \ldots, S_l^l$ of S satisfying $|S_i^l| = \frac{|S|}{l}$; $i = 1, 2, \ldots, l$ (|A| denotes the sum of all elements of the set A). Find the minimal possible value of n.

Solution:

Let us show that $n \ge 9$. Let $\sum_{i=1}^{n} a_i = A$. Suppose that $n \le 8$. If we take l = 5 then $|S_i^5| = \frac{A}{5}$ and consequently each $a_i \le \frac{A}{5}$. At least two of the subsets $S_i^5, i = 1, \ldots, 5$ contain one element, so for some s, t we have $a_s = a_t = \frac{A}{5}$. Contradiction and $n \ge 9$. $S = \{1, 2, 4, 5, 7, 8, 10, 11, 12\}$ satisfies conditions:

$$\begin{split} l &= 2: \ \{4,5,10,11\}, \{1,2,7,8,12\}.\\ l &= 3: \ \{1,7,12\}, \{4,5,11\}, \{2,8,10\}.\\ l &= 4: \ \{4,11\}, \{5,10\}, \{7,8\}, \{1,2,12\}.\\ l &= 5: \{1,11\}, \{2,10\}, \{4,8\}, \{5,7\}, \{12\}. \end{split}$$

Thus, the minimal n = 9 .

Remark. We can prove $n \ge 9$ also in the case when S is a multiset (some elements of S may coincide) by slightly more detailed analysis. Again suppose that $n \le 8$. If l = 4, then $|S_1^4| = |S_2^4| = |S_l^3| = |S_l^4| = \frac{A}{4}$ and therefore each S_i^4 contains at least two elements

and n = 8. Thus, each S_i^4 contains exactly two elements. Let us show that at least six elements of S are of the the form $\frac{A \cdot k}{5}$ where k is a nonnegative integer. If there are only two elements of S equal to $\frac{A}{5}$, then there are also at least two elements $\frac{A}{20}$ for getting $\frac{A}{4}$. In order to get $\frac{A}{5}$ in the case l = 5 we need at least two elements of the form $\frac{3A}{20}$ to add to elements $\frac{A}{20}$ and in total we have six elements of the form $\frac{A \cdot k}{20}$. If there are at least three elements of S equal to $\frac{A}{5}$, then there are also at least three elements $\frac{A}{20}$ for getting $\frac{A}{4}$ and in total we have six elements of the form $\frac{A \cdot k}{20}$. If there are at least three elements of S equal to $\frac{A}{5}$, then there are also at least three elements $\frac{A}{20}$ for getting $\frac{A}{4}$ and in total we have six elements of the form $\frac{A \cdot k}{20}$. Thus, there are at least six elements of S of the form $\frac{A \cdot k}{20}$ and if we take l = 3, at least one of the subsets S_i^3 consists of only elements $\frac{A \cdot k}{20}$. Contradiction since $|S_i^3| = \frac{A}{3}$.