Bilkent University
Department of Mathematics

Problem Of The Month

January 2012

Problem:

Find the maximal possible value of the expression $A=\sum_{i=1}^{2012} \sum_{j=1}^{2012} a_{i, j}$ if the following two conditions are held:

- $a_{i, j}=0$ or 1
- if for some k and $l a_{k, l}=1$ then at least one of the sums $\sum_{j=1}^{2012} a_{k, j}$ and $\sum_{i=1}^{2012} a_{i, l}$ does not exceed 2 .

Solution:

The answer is 8040 . First of all, let us show that $A \leq 8040$. Suppose that $a_{k, l}=1$: we say that k is 1 -good, if $\sum_{j=1}^{2012} a_{k, j} \leq 2$; we say that l is 2 -good if $\sum_{i=1}^{2012} a_{i, l} \leq 2$.

If the total number of 1 -good values of k is 2012 , then $A \leq 2 \cdot 2012=4024$.
If the total number of 2 -good values of l is 2012 , then $A \leq 2 \cdot 2012=4024$.
If the total number of 1 -good values of k is 2011 , then $A \leq 2 \cdot 2011+2012=6036$.
If the total number of 2 -good values of l is 2011 , then $A \leq 2 \cdot 2011+2012=6036$.
Finally, if the total number of 1-good values of k is less than 2011 and the total number of 2 -good values of l is less than 2011, then the total number of good values is at most 4020 and readily $A \leq 2 \cdot 4020=8040$, since the number of nonzero terms of A is less than twice the number of good values. Done.

Now we give an example for $A=8040$. Let $a_{i, j}=1$ only for the following (i, j) pairs:
$i=1$ and $2 \leq j \leq 2011 ;$
$i=2012$ and $2 \leq j \leq 2011$;
$j=1$ and $2 \leq i \leq 2011$;
$j=2012$ and $2 \leq i \leq 2011$.
The conditions are readily satisfied and $A=8040$.

