

Bilkent University
Department of Mathematics

Problem Of The Month

December 2011

Problem:

A sequence $\left\{a_{n}\right\}$ is said to be good if $a_{1}=1$ and $\left|a_{k+1}\right|=\left|a_{k}+1\right|$. Let $c_{n}=\min \left|\sum_{i=1}^{n} a_{i}\right|$, where the minimum is taken over all good sequences. Prove that the sequence $\left\{c_{n}\right\}$ is unbounded from above.

Solution:

Note that $a_{1}=1$ and for all $i \geq 1$

$$
a_{i+1}^{2}=a_{i}^{2}+2 a_{i}+1
$$

The sum of (\dagger) over $i=1, \ldots, n$ yields:
$a_{n+1}^{2}=2 \sum_{i=1}^{n} a_{i}+n+1$ or $c_{n}=\left|\frac{a_{n+1}^{2}-(n+1)}{2}\right|$. Now we note that since $(k+1)^{2}-k^{2}=$ $2 k+1$, the distance from $n+1$ to the nearest perfect square is unbounded when n increases. Done.

