Bilkent University Department of Mathematics

Problem Of The Month

October 2011

Problem:

Let $x_{1}, x_{2}, \ldots, x_{2011}$ be nonnegative real numbers satisfying $x_{1}+x_{2}+x_{3} \cdots+x_{2011}=1$. Show that

$$
x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{2011} x_{1}+x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+\cdots+x_{2011} x_{1} x_{2}
$$

can not exceed $\frac{31}{108}$.

Solution:

Put $A\left(x_{1}, x_{2}, \ldots, x_{2011}\right)=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{2011} x_{1}$.
Suppose that for each $i=1,2, \ldots, 2011$ we have $x_{i}^{\prime} \neq 0$. Choose k for which $x_{k-1}^{\prime}+x_{k+1}^{\prime}$ is minimal $\left(x_{2012}^{\prime}=x_{1}^{\prime}\right)$. Then it can be readily seen that for any $l>k+1$
$A\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{2011}^{\prime}\right) \leq A\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{k-1}^{\prime}, 0, x_{k+1}^{\prime}, \ldots, x_{l-1}^{\prime}, x_{l}^{\prime}+x_{k}^{\prime}, x_{l+1}^{\prime}, \ldots, x_{2011}^{\prime}\right)$.
Therefore, we can suppose that at least one of the numbers $x_{1}, x_{2}, \ldots, x_{2011}$ is zero. Without loss of generality we suppose that $x_{2011}=0$. Now since
$A\left(x_{1}, x_{2}, \ldots, x_{2011}\right) \leq\left(x_{1}+x_{3}+\cdots+x_{2011}\right)\left(x_{2}+x_{4}+\cdots+x_{2010}\right)$
by AG inequality we get

$$
x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{2011} x_{1} \leq\left(\frac{\left(x_{1}+x_{2}+x_{3} \cdots+x_{2011}\right)}{2}\right)^{2}=\frac{1}{4} .
$$

Put $B\left(x_{1}, x_{2}, \ldots, x_{2011}\right)=x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+\cdots+x_{2011} x_{1} x_{2}$.

Suppose that for each $i=1,2, \ldots, 2011$ we have $x_{i}^{\prime} \neq 0$. Choose k for which $x_{k-2}^{\prime} x_{k-1}^{\prime}+$ $x_{k-1}^{\prime} x_{k+1}^{\prime}+x_{k+1}^{\prime} x_{k+2}^{\prime}$ is minimal $\left(x_{2012}^{\prime}=x_{1}^{\prime}, x_{2013}^{\prime}=x_{2}^{\prime}\right)$. Then it can be readily seen that for any $l>k+2$
$B\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{2011}^{\prime}\right) \leq B\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{k-1}^{\prime}, 0, x_{k+1}^{\prime}, \ldots, x_{l-1}^{\prime}, x_{l}^{\prime}+x_{k}^{\prime}, x_{l+1}^{\prime}, \ldots, x_{2011}^{\prime}\right)$.
Therefore, we can suppose that at least one of the numbers $x_{1}, x_{2}, \ldots, x_{2011}$ is zero. Without loss of generality we suppose that $x_{2011}=0$. Now since
$x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+\cdots+x_{2011} x_{1} x_{2} \leq\left(x_{1}+x_{4}+\cdots+x_{2011}\right)\left(x_{2}+x_{5}+\cdots+x_{2010}\right)\left(x_{3}+x_{6}+\cdots+x_{2011}\right)$ by AG inequality we get

$$
x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+\cdots+x_{2011} x_{1} x_{2} \leq\left(\frac{\left(x_{1}+x_{2}+x_{3} \cdots+x_{2011}\right)}{3}\right)^{3}=\frac{1}{27} .
$$

Thus, $A\left(x_{1}, x_{2}, \ldots, x_{2011}\right)+B\left(x_{1}, x_{2}, \ldots, x_{2011}\right) \leq \frac{1}{4}+\frac{1}{27}=\frac{31}{108}$. Done.

