Problem Of The Month

September 2011

Problem:

Let $a_{1}=1, a_{2}=1$ and $a_{n}=a_{n-1}+a_{n-2}$ for each $n>2$. Find the smallest real number A satisfying

$$
\sum_{i=1}^{k} \frac{1}{a_{i} a_{i+2}} \leq A
$$

for any natural number k.

Solution:

By the method of mathematical induction we show that

$$
\sum_{i=1}^{n} \frac{1}{a_{i} a_{i+2}}=1-\frac{1}{a_{n+1} a_{n+2}}
$$

1. If $n=1(\dagger)$ is readily held.
2. Suppose (\dagger) is held for $n=k$. Then

$$
\sum_{i=1}^{n+1} \frac{1}{a_{i} a_{i+2}}=1-\frac{1}{a_{n+1} a_{n+2}}+\frac{1}{a_{n+1} a_{n+3}}=1-\frac{a_{n+3}-a_{n+2}}{a_{n+1} a_{n+2} a_{n+3}}=1-\frac{1}{a_{n+2} a_{n+3}}
$$

Thus, (\dagger) is proved. Since $a_{n} \rightarrow \infty$ when $n \rightarrow \infty$ the smallest $A=1$. Done.

