

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

September 2011

Problem:

Let $a_1 = 1, a_2 = 1$ and $a_n = a_{n-1} + a_{n-2}$ for each n > 2. Find the smallest real number A satisfying

$$\sum_{i=1}^k \frac{1}{a_i a_{i+2}} \le A$$

for any natural number k.

Solution:

By the method of mathematical induction we show that

$$\sum_{i=1}^{n} \frac{1}{a_i a_{i+2}} = 1 - \frac{1}{a_{n+1} a_{n+2}} \tag{\dagger}$$

1. If n = 1 (†) is readily held.

2. Suppose (†) is held for n = k. Then

$$\sum_{i=1}^{n+1} \frac{1}{a_i a_{i+2}} = 1 - \frac{1}{a_{n+1} a_{n+2}} + \frac{1}{a_{n+1} a_{n+3}} = 1 - \frac{a_{n+3} - a_{n+2}}{a_{n+1} a_{n+2} a_{n+3}} = 1 - \frac{1}{a_{n+2} a_{n+3}}$$

Thus, (†) is proved. Since $a_n \to \infty$ when $n \to \infty$ the smallest A = 1. Done.