

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

June 2011

Problem:

Given natural numbers a and b, the sequence d_n , n = 1, 2, ... is defined by

$$d_n = \sqrt[n+1]{a^n + b^n}$$

Determine all pairs (a, b) for which all elements of the sequence $\{d_n\}$ are integers.

Solution:

We consider 0 as a non natural number. Note that $d_n \leq a+b$, otherwise $d_n^{n+1} > (a+b)^{n+1} > a^n + b^n$. Therefore, the sequence d_n , n = 1, 2, ... is bounded and there exists a natural number d such that $d = \sqrt[n+1]{a^n + b^n}$ for infinitely many values of n. Suppose that $a \geq b$. We get

$$\left(a/d\right)^n + \left(b/d\right)^n = d$$

for infinitely many values of n. Now if a > d, then the left hand side is unbounded, a contradiction. If $a \le d$, then $(a/d)^n + (b/d)^n \le 1 + 1 = 2$. Thus, d = 1 or d = 2. d = 1 gives no solution, d = 2 yields the only solution a = b = 2. Done.