

Bilkent University Department of Mathematics

Problem Of The Month

June 2011

Problem:

Given natural numbers a and b, the sequence $d_{n}, n=1,2, \ldots$ is defined by

$$
d_{n}=\sqrt[n+1]{a^{n}+b^{n}}
$$

Determine all pairs (a, b) for which all elements of the sequence $\left\{d_{n}\right\}$ are integers.

Solution:

We consider 0 as a non natural number. Note that $d_{n} \leq a+b$, otherwise $d_{n}^{n+1}>$ $(a+b)^{n+1}>a^{n}+b^{n}$. Therefore, the sequence $d_{n}, n=1,2, \ldots$ is bounded and there exists a natural number d such that $d=\sqrt[n+1]{a^{n}+b^{n}}$ for infinitely many values of n. Suppose that $a \geq b$. We get

$$
(a / d)^{n}+(b / d)^{n}=d
$$

for infinitely many values of n. Now if $a>d$, then the left hand side is unbounded, a contradiction. If $a \leq d$, then $(a / d)^{n}+(b / d)^{n} \leq 1+1=2$. Thus, $d=1$ or $d=2$. $d=1$ gives no solution, $d=2$ yields the only solution $a=b=2$. Done.

