Bilkent University Department of Mathematics

Problem Of The Month

January 2011

Problem:

M is the set of squares of the first 20 natural numbers:
$M=\left\{1^{2}, 2^{2}, 3^{2}, 4^{2}, \ldots, 20^{2}\right\}$.
We say that n is a good number, if in any subset of M of size n there are two elements a and b such that $a+b$ is a prime number. Find the smallest good number.

Solution:

The answer: $n=11$.
Let $K=\left\{1^{2}, 3^{2}, 5^{2}, \ldots, 17^{2}, 19^{2}\right\}$. Since the sum of any two elements of K is not prime, $n \geq 11$.

Now let us show that $n \leq 11$. We partition M into 10 subsets of order 2 such that the sum of two elements in any subset is prime:
$M=\left\{1^{2}, 4^{2}\right\} \cup\left\{2^{2}, 3^{2}\right\} \cup\left\{5^{2}, 8^{2}\right\} \cup\left\{6^{2}, 11^{2}\right\} \cup\left\{7^{2}, 10^{2}\right\} \cup\left\{9^{2}, 16^{2}\right\} \cup\left\{12^{2}, 13^{2}\right\} \cup$ $\left\{14^{2}, 15^{2}\right\} \cup\left\{17^{2}, 18^{2}\right\} \cup\left\{19^{2}, 20^{2}\right\}$.

Any subset of M having 11 elements contains both elements of least one of these 10 subsets. Done.

