Bilkent University Department of Mathematics

## Problem Of The Month

December 2010

## Problem:

Find the maximal possible real number $A$ such that

$$
\frac{x^{3}}{x^{2}+1}+\frac{y^{3}}{y^{2}+1}+\frac{z^{3}}{z^{2}+1} \geq A
$$

for all real numbers $x, y$ and $z$ satisfying $x+y+z=1$.

## Solution:

The answer is $\frac{1}{10}$.
The inequality is equivalent to

$$
x-\frac{x^{3}}{x^{2}+1}+y-\frac{y^{3}}{y^{2}+1}+z-\frac{z^{3}}{z^{2}+1} \leq 1-A
$$

Thus, we have to prove that

$$
\begin{equation*}
\frac{x}{x^{2}+1}+\frac{y}{y^{2}+1}+\frac{z}{z^{2}+1} \leq \frac{9}{10} \tag{*}
\end{equation*}
$$

Case 1: $x, y, z \in[0, \sqrt{3}]$. Define $f(t)=\frac{t}{t^{2}+1}$. Since $f^{\prime \prime}(t)=\frac{2 t\left(t^{2}-3\right)}{\left(t^{2}+1\right)^{3}} \leq 0$ for all $t \in$ $[0, \sqrt{3}], f(\cdot)$ is concave on $[0, \sqrt{3}]$ interval and $f(x)+f(y)+f(z) \leq 3 f(1 / 3)=9 / 10$ and ( $*$ ) follows.
W.l.o.g. suppose that $x \geq y \geq z$. Then $z<0$.

Since $f^{\prime}(t)=\frac{1-t^{2}}{\left(1+t^{2}\right)^{2}}$
$f(\cdot)$ decreases on $(-\infty,-1)$, increases on $(-1,1)$ and again decreases on $(1, \infty)(* *)$
Case 2: $y<1 / 2$. Then by $(* *)$

$$
\frac{x}{x^{2}+1}+\frac{y}{y^{2}+1}+\frac{z}{z^{2}+1}<f(1)+f\left(\frac{1}{2}\right)+0=\frac{9}{10}
$$

Case 3: $y \geq 1 / 2$.
If $z \geq-\frac{1}{2}$, then by $(* *)$

$$
\frac{x}{x^{2}+1}+\frac{y}{y^{2}+1}+\frac{z}{z^{2}+1} \leq \frac{x}{(1 / 2)^{2}+1}+\frac{y}{(1 / 2)^{2}+1}+\frac{z}{(1 / 2)^{2}+1}=\frac{4}{5}<\frac{9}{10}
$$

If $-3 \leq z<-\frac{1}{2}$, then since $f(-3)>f(-1 / 2)$ by $(* *)$

$$
\frac{x}{x^{2}+1}+\frac{y}{y^{2}+1}+\frac{z}{z^{2}+1} \leq f(1)+f(1)+f(-3)=\frac{7}{10}<\frac{9}{10}
$$

If $z<-3$, then $x>2$ and by $(* *)$

$$
\frac{x}{x^{2}+1}+\frac{y}{y^{2}+1}+\frac{z}{z^{2}+1} \leq f(2)+f(1)+0=\frac{9}{10}
$$

The equality in $(*)$ holds if $x=y=z=\frac{1}{3}$

