

Bilkent University Department of Mathematics

PROBLEM OF THE MONTH

December 2010

Problem:

Find the maximal possible real number A such that

$$\frac{x^3}{x^2+1} + \frac{y^3}{y^2+1} + \frac{z^3}{z^2+1} \ge A$$

for all real numbers x, y and z satisfying x + y + z = 1.

Solution:

The answer is $\frac{1}{10}$.

The inequality is equivalent to

$$x - \frac{x^3}{x^2 + 1} + y - \frac{y^3}{y^2 + 1} + z - \frac{z^3}{z^2 + 1} \le 1 - A$$

Thus, we have to prove that

$$\frac{x}{x^2+1} + \frac{y}{y^2+1} + \frac{z}{z^2+1} \le \frac{9}{10} \tag{(*)}$$

Case 1: $x, y, z \in [0, \sqrt{3}]$. Define $f(t) = \frac{t}{t^2 + 1}$. Since $f''(t) = \frac{2t(t^2 - 3)}{(t^2 + 1)^3} \leq 0$ for all $t \in [0, \sqrt{3}]$, $f(\cdot)$ is concave on $[0, \sqrt{3}]$ interval and $f(x) + f(y) + f(z) \leq 3f(1/3) = 9/10$ and (*) follows.

W.l.o.g. suppose that $x \ge y \ge z$. Then z < 0.

Since
$$f'(t) = \frac{1 - t^2}{(1 + t^2)^2}$$

 $f(\cdot)$ decreases on $(-\infty, -1)$, increases on (-1, 1) and again decreases on $(1, \infty)$ (**)

Case 2: y < 1/2. Then by (**)

$$\begin{aligned} \frac{x}{x^2+1} + \frac{y}{y^2+1} + \frac{z}{z^2+1} &< f(1) + f(\frac{1}{2}) + 0 = \frac{9}{10} \end{aligned}$$
Case 3: $y \ge 1/2$.
If $z \ge -\frac{1}{2}$, then by (**)

$$\frac{x}{x^2+1} + \frac{y}{y^2+1} + \frac{z}{z^2+1} \le \frac{x}{(1/2)^2+1} + \frac{y}{(1/2)^2+1} + \frac{z}{(1/2)^2+1} = \frac{4}{5} < \frac{9}{10}$$
If $-3 \le z < -\frac{1}{2}$, then since $f(-3) > f(-1/2)$ by (**)

$$\frac{x}{x^2+1} + \frac{y}{y^2+1} + \frac{z}{z^2+1} \le f(1) + f(1) + f(-3) = \frac{7}{10} < \frac{9}{10}$$

If z < -3, then x > 2 and by (**)

$$\frac{x}{x^2+1} + \frac{y}{y^2+1} + \frac{z}{z^2+1} \le f(2) + f(1) + 0 = \frac{9}{10}$$

The equality in (*) holds if $x = y = z = \frac{1}{3}$